Return to study ST001313 main page

MB Sample ID: SA094687

Local Sample ID:HFV2
Subject ID:SU001387
Subject Type:Mammal
Subject Species:Rattus norvegicus
Taxonomy ID:10116
Genotype Strain:Sprague Dawley
Age Or Age Range:240 days
Gender:Male
Animal Animal Supplier:Harlan
Animal Housing:polycarbonate-free caging
Animal Light Cycle:14-hr light and 10-hr dark
Animal Feed:Phytoestrogen Reduced II 18-5 (Ziegler Bros, Inc) or D09100301 (Research Diets, Inc)

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002186 AN002187
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Shimadzu Nexera-x2 Shimadzu Nexera-x2
Column Acquity HSS UPLC T3 (50 x 2.1mm,1.8um) Acquity HSS UPLC T3 (50 x 2.1mm,1.8um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name ABI Sciex 5600 TripleTOF ABI Sciex 5600 TripleTOF
Ion Mode POSITIVE NEGATIVE
Units peak intensity peak intensity

MS:

MS ID:MS002033
Analysis ID:AN002186
Instrument Name:ABI Sciex 5600 TripleTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:For data acquisition through LC/MS analysis, we used a Shimadzu CTO-20A Nexera X2 UHPLC system equipped with a degasser, binary pump, thermostatted auto sampler, and a column oven for chromatographic separation. The column heater temperature was set at 55°C. For lipid separation, the 5 uL of the lipid extract was injected into a 1.8 μm particle 50 × 2.1 mm Acquity HSS UPLC T3 column (Waters, Milford, MA) which heats to 55°C. Acetonitrile/water (40:60, v/v) with 10 mM ammonium acetate was solvent A and acetonitrile/water/isopropanol (10:5:85 v/v) with 10 mM ammonium acetate was solvent B. For chromatographic elution we used a linear gradient over a 20 min total run time, with 60% solvent A and 40% solvent B gradient in the first 10 minutes, then the gradient was ramped in a linear fashion to 100% solvent B which was maintained for 7 minutes. After that the system was switched back to 60% solvent B and 40% solvent A for 3 minutes. The flow rate used for these experiments was 0.4 mL/min and the injection volume was 5μL. The column was equilibrated for 3 min before the next injection and run at a flow rate of 0.4 mL/min for a total run time of 20 min. The data acquisition of each sample was performed in both positive and negative ionization modes using a TripleTOF 5600 equipped with a Turbo VTM ion source (AB Sciex, Concord, Canada). The column effluent was directed to the electrospray ionization source. The voltage of source was set to 5500 V for positive ionization and 4500 V for negative ionization mode, the declustering potential was set to 60 V, and the source temperature to 450oC for both modes. The curtain gas flow, nebulizer, and heater gas were set to 30, 40, and 45 units, respectively. The instrument performed one TOF MS survey scan (150 ms) and 15 MS/MS scans with a total duty cycle time of 2.4 s. The mass range in both modes was 50-1200 m/z. We controlled the acquisition of MS/MS spectra by data-dependent acquisition (DDA) function of the Analyst TF software (AB Sciex, Concord, Canada) with the following parameters: dynamic background subtraction, charge monitoring to exclude multiply charged ions and isotopes, and dynamic exclusion of former target ions for 9 s. Rolling collision energy spread was set whereby the software calculated the collision energy value to be applied as a function of m/z. Mass accuracy was maintained by the use of an automated calibrant delivery system interfaced to the second inlet of the DuoSpray source.
Ion Mode:POSITIVE
  
MS ID:MS002034
Analysis ID:AN002187
Instrument Name:ABI Sciex 5600 TripleTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:For data acquisition through LC/MS analysis, we used a Shimadzu CTO-20A Nexera X2 UHPLC system equipped with a degasser, binary pump, thermostatted auto sampler, and a column oven for chromatographic separation. The column heater temperature was set at 55°C. For lipid separation, the 5 uL of the lipid extract was injected into a 1.8 μm particle 50 × 2.1 mm Acquity HSS UPLC T3 column (Waters, Milford, MA) which heats to 55°C. Acetonitrile/water (40:60, v/v) with 10 mM ammonium acetate was solvent A and acetonitrile/water/isopropanol (10:5:85 v/v) with 10 mM ammonium acetate was solvent B. For chromatographic elution we used a linear gradient over a 20 min total run time, with 60% solvent A and 40% solvent B gradient in the first 10 minutes, then the gradient was ramped in a linear fashion to 100% solvent B which was maintained for 7 minutes. After that the system was switched back to 60% solvent B and 40% solvent A for 3 minutes. The flow rate used for these experiments was 0.4 mL/min and the injection volume was 5μL. The column was equilibrated for 3 min before the next injection and run at a flow rate of 0.4 mL/min for a total run time of 20 min. The data acquisition of each sample was performed in both positive and negative ionization modes using a TripleTOF 5600 equipped with a Turbo VTM ion source (AB Sciex, Concord, Canada). The column effluent was directed to the electrospray ionization source. The voltage of source was set to 5500 V for positive ionization and 4500 V for negative ionization mode, the declustering potential was set to 60 V, and the source temperature to 450oC for both modes. The curtain gas flow, nebulizer, and heater gas were set to 30, 40, and 45 units, respectively. The instrument performed one TOF MS survey scan (150 ms) and 15 MS/MS scans with a total duty cycle time of 2.4 s. The mass range in both modes was 50-1200 m/z. We controlled the acquisition of MS/MS spectra by data-dependent acquisition (DDA) function of the Analyst TF software (AB Sciex, Concord, Canada) with the following parameters: dynamic background subtraction, charge monitoring to exclude multiply charged ions and isotopes, and dynamic exclusion of former target ions for 9 s. Rolling collision energy spread was set whereby the software calculated the collision energy value to be applied as a function of m/z. Mass accuracy was maintained by the use of an automated calibrant delivery system interfaced to the second inlet of the DuoSpray source.
Ion Mode:NEGATIVE
  logo