Summary of Study ST002429

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001563. The data can be accessed directly via it's Project DOI: 10.21228/M8NX4M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002429
Study TitleInsights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part One—Salinity
Study TypeMulti-Omics Integration (MOI) Study
Study SummaryOil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world’s irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upreg- ulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing sev- eral pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules.
Institute
The Brazilian Agricultural Research Corporation (Embrapa)
DepartmentEmbrapa Agroenergy
LaboratoryGenetics and Plant Biotechnology
Last NameSouza Jr
First NameManoel Teixeira
AddressParque Estacao Biologica, Final Avenida W3 Norte - Asa Norte, Brasilia, Distrito Federal, 70770901, Brazil
Emailmanoel.souza@embrapa.br
Phone+55.61.3448.3210
Submit Date2022-09-28
Publicationshttps://doi.org/10.3390/plants11131755
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailLC-MS
Release Date2023-01-20
Release Version1
Manoel Teixeira Souza Jr Manoel Teixeira Souza Jr
https://dx.doi.org/10.21228/M8NX4M
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003953 AN003954
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Shimadzu Nexera X2 Shimadzu Nexera X2
Column Waters Acquity BEH HSS T3 (100 x 2.1mm, 1.8um) Waters Acquity BEH HSS T3 (100 x 2.1mm, 1.8um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Bruker maXis Impact qTOF Bruker maXis Impact qTOF
Ion Mode POSITIVE NEGATIVE
Units Peak intensity Peak intensity
  logo