Summary of Study ST001499

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001015. The data can be accessed directly via it's Project DOI: 10.21228/M8H40X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001499
Study TitleMetabolomics reveals the protective effect of isosteviol sodium against multiple organ injury in septic mice - Heart
Study SummarySepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and anticancer activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, and reduced the production of inflammatory cytokines. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis. Mice are randomly assigned to 4 groups in study design. Control: saline + saline Model: saline + LPS; Treatment: STV-Na + LPS; Positive: dexamethasone (Dex) + LPS. Drugs were administered i.p. Six hours after LPS injection, mice were sacrificed. And blood and tissues (heart, lung, liver, spleen and kidney) were subjected to UHPLC-TIMS TOF MS/MS-based metabolomics analyses.
Institute
Guangdong University of Technology
Last NameWang
First NameShanping
AddressNo. 100, Waihuan Xilu, Guangzhou Higher Education Mega Center, Panyu District,
Emailshanpingwang@outlook.com
Phone15521002792
Submit Date2020-09-29
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2021-03-01
Release Version1
Shanping Wang Shanping Wang
https://dx.doi.org/10.21228/M8H40X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002482 AN002483
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Waters Acquity BEH C18 (50 x 2.1mm,1.7um) Waters Acquity BEH C18 (50 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Bruker TIMS TOF Bruker TIMS TOF
Ion Mode POSITIVE NEGATIVE
Units Intensity Intensity

Chromatography:

Chromatography ID:CH001819
Chromatography Summary:Chromatographic separations were conducted utilizing a Waters BEH C18, 2.1 mm×50 mm 1.7 µm particle column with a Dionex Ultimate 3000 UHPLC system from Thermo Fisher Scientific (CA, USA). The mobile phase encompassed water with 0.1% v/v formic acid (A) and acetonitrile with 0.1% v/v formic acid (B). Columns were kept at 40°C and eluted using a linear gradient: 2-30% B at 0-4 min, 30-40% B at 4-5 min, 40% B at 5-8 min, 40-60% B at 8-10 min, 60-100% B at 10-17 min, 100% B at 17-19 min, 100-2% B at 19-19.1 min, and 2% B at 19.1-25 min. To increase the amount of metabolites and save experimental time, a new sampling method was used to detect both the organic phase and the aqueous phase extracts (Qiuhui Xuan et al., 2018; Shanping Wang et al., 2019): 5 µL of organic phase extracts were first loaded without running the elution gradient, which lasted for one minute at the initial mobile phase, and then 5 µL of the aqueous phase extracts were added to the same column in order to start running the elution gradient using a 0.4 mL/min flow rate.
Methods Filename:shanpingwang_Chromatography_Methods.docx
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Waters Acquity BEH C18 (50 x 2.1mm,1.7um)
Column Temperature:40
Flow Rate:0.4 mL/min
Solvent A:100% water; 0.1% formic acid
Solvent B:100% acetonitrile; 0.1% formic acid
Chromatography Type:Reversed phase
  logo