Summary of Study ST001934

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001223. The data can be accessed directly via it's Project DOI: 10.21228/M8MQ47 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001934
Study TitleDifferential Accumulation of Metabolites and Transcripts Related to Flavonoid, Styrylpyrone, and Galactolipid Biosynthesis in Equisetum Species and Tissue Types
Study SummaryMembers of the genus Equisetum are often referred to as “living fossils”, partly because they are the only extant representatives of the Equisetidae, a subclass that was once prominent in late Paleozoic forests. Several classes of specialized metabolites have been reported to occur in the genus Equisetum. However, while steady progress is being made with identifying individual novel metabolites of Equisetum, few if any analyses have focused on assessing the chemical diversity across the genus. The present study focused on three species: E. hyemale subsp. affine (rough horsetail or scouring rush), which is native to the temperate to artic portions of North America; E. arvense (common horsetail), which is endemic to the arctic and temperate regions of the northern hemisphere; and Equisetum telmateia subsp. braunii (Milde) Hauke (giant horsetail), which is native to western North America. Both below-ground rhizome and above-ground shoot material was harvested from each species, extracted with aqueous methanol, and subjected to non-targeted HPLC-QTOF-MS analysis. This research project was designed to lay the foundation for continued research to capture the metabolic capabilities in the ferns and fern allies.
Institute
Washington State University
DepartmentInstitute of Biological Chemistry
LaboratoryLange
Last NameLange
First NameMark
AddressPlant Sciences Building, Pullman, Washington 99164
Emaillange-m@wsu.edu
Phone+1-509-335-3794
Submit Date2021-09-24
Num Groups6
Total Subjects30
Publicationshttps://doi.org/10.3390/metabo12050403
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2022-05-09
Release Version1
Mark Lange Mark Lange
https://dx.doi.org/10.21228/M8MQ47
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN003144
Analysis type MS
Chromatography type HPLC
Chromatography system Agilent 1290 HPLC
Column HD Zorbax SB-Aq (100 × 2.1 × mm, 1.8 µm)
MS Type ESI
MS instrument type QTOF
MS instrument name Agilent 6530 QTOF
Ion Mode POSITIVE
Units Peak area

Chromatography:

Chromatography ID:CH002326
Instrument Name:Agilent 1290 HPLC
Column Name:HD Zorbax SB-Aq (100 × 2.1 × mm, 1.8 µm)
Column Temperature:60 °C
Flow Gradient:5 % B to 10 % B at 5 min, 20 % B at 10 min, 80 % B at 35 min, 95 % B at 45 min
Flow Rate:0.6 ml/min
Internal Standard:10 mg/l Anthracene-9-carboxylic acid
Sample Injection:10 ul
Solvent A:0.1 % formic acid in water
Solvent B:0.1 % formic acid in acetonitrile
Target Sample Temperature:Autosampler set to 4 °C
Chromatography Type:HPLC
  logo