Summary of Study ST000399

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000312. The data can be accessed directly via it's Project DOI: 10.21228/M8KP4K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST000399
Study TitleE.coli effects on growth and substrate uptake of green algae (part I - HILIC)
Study SummaryThe purpose of this project was to quantify the exchange of thiamine between bacteria and algae. We previously observed that the model bacteria, Escherichia coli, enhanced the growth and substrate uptake of the green algae, Auxenochlorella protothecoides. We hypothesized that this growth enhancement was due to the secretion of thiamine derivatives or degradation products by E. coli followed by uptake of these compounds by A. protothecoides. Targeted and untargeted LCMS revealed the presence of thiamine dervatives in E. coli cell extracts. These LCMS methods were also used to quantify thiamine derivatives and two degradation products, HMP and THZ, present in E. coli medium after cell removal. The LCMS results along with culture studies were employed to show that thiamine derivatives and degradation products were the primary mechanism of symbiosis between E. coli and A. protothecoides.
Institute
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Emailofiehn@ucdavis.edu
Phone(530) 754-8258
Submit Date2015-04-20
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2016-06-18
Release Version1
Oliver Fiehn Oliver Fiehn
https://dx.doi.org/10.21228/M8KP4K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN000636 AN000637
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Agilent 6530 Agilent 6550
Column Waters Acquity BEH Amide (150 x 2.1mm,1.7um) Waters Acquity BEH Amide (150 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Agilent 6530 QTOF Agilent 6550 QTOF
Ion Mode POSITIVE NEGATIVE
Units counts counts

MS:

MS ID:MS000568
Analysis ID:AN000636
Instrument Name:Agilent 6530 QTOF
Instrument Type:QTOF
MS Type:ESI
Ion Mode:POSITIVE
Capillary Voltage:3500 V
Collision Gas:Nitrogen
Dry Gas Flow:8 L/min
Dry Gas Temp:325 C
Fragment Voltage:120 V
Fragmentation Method:Auto MS/MS
Ion Source Temperature:325
Ion Spray Voltage:1000
Ionization:Pos
Precursor Type:Intact Molecule
Reagent Gas:Nitrogen
Source Temperature:325 C
Dataformat:.d
Desolvation Gas Flow:11 L/min
Desolvation Temperature:350 C
Nebulizer:35 psig
Octpole Voltage:750 V
Resolution Setting:extended dynamic range
Scan Range Moverz:60-1700 Da
Scanning Cycle:2 Hz
Scanning Range:60-1700 Da
Skimmer Voltage:1850 V
  
MS ID:MS000569
Analysis ID:AN000637
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
Ion Mode:NEGATIVE
Capillary Voltage:3500 V
Collision Gas:Nitrogen
Dry Gas Flow:13 L/min
Dry Gas Temp:200 C
Fragment Voltage:175 V
Fragmentation Method:Auto MS/MS
Ion Source Temperature:325 C
Ion Spray Voltage:1000 V
Ionization:Neg
Precursor Type:Intact Molecule
Reagent Gas:Nitrogen
Source Temperature:325 C
Dataformat:.d
Desolvation Gas Flow:11 L/min
Desolvation Temperature:350 C
Nebulizer:35 psig
Octpole Voltage:750 V
Resolution Setting:extended dynamic range
Scan Range Moverz:60-1700 Da
Scanning Cycle:2 Hz
Scanning Range:60-1700 Da
Skimmer Voltage:1850 V
  logo