Summary of Study ST001026

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000684. The data can be accessed directly via it's Project DOI: 10.21228/M8868G This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)
Study IDST001026
Study TitleTCA cycle metabolomics of H3K27M Cell Nucleus Fraction and Cell Mitonchonrdial Fraction (Part-IV)
Study SummaryTesting TCA concentrations of Diffuse Intrinsic Pontine Gliomas (DIPG) cellines with H3K27M mutations. Preliminary studies show H3K27M tumor cells are addicted to Gln for survival. Removal of Gln from media resulted in tumor cell death which was rescued by the addition of α-KG. These data show that Gln is taken up and metabolized by H3K27M tumor cells and that Gln derived α-KG is critical for the survival of these tumors. Interestingly, tumor cell death with Gln deprivation was similar to the effect of the JMJD3 inhibitor GSKJ4. Therefore, Gln derived α-KG may be required for both anaplerosis and to drive JMJD3 demethylation. We hypothesize that H3K27M tumors are reliant on α-KG that is derived from Gln to drive the TCA cycle and further decrease H3K27 methylation levels. Furthermore, inhibition of Gln metabolism may represent a novel therapeutic approach for tumors with this mutation. In this study, TCA cycle metabolomics are analyzed of H3K27M cells grown in regular glutamine media, glutamine free media, and glutamine free media with alpha-ketoglutarate. Additionally, cell nucleus and cell mitochrondial fractions are run separately.
Institute
Mayo Clinic
Last NameDaniels
First NameDavid
Address200 First Street SW Rochester, MN 55905
Emaildaniels.david@mayo.edu
Phone507-284-2511
Submit Date2018-07-18
Analysis Type DetailGC-MS
Release Date2020-07-15
Release Version1
David Daniels David Daniels
https://dx.doi.org/10.21228/M8868G
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN001683
Analysis type MS
Chromatography type GC
Chromatography system Agilent 7890B
Column Agilent HP5-MS (30m × 0.25mm, 0.25 um)
MS Type EI
MS instrument type Single quadrupole
MS instrument name Agilent 5977A
Ion Mode POSITIVE
Units nmol/vial

MS:

MS ID:MS001558
Analysis ID:AN001683
Instrument Name:Agilent 5977A
Instrument Type:Single quadrupole
MS Type:EI
Ion Mode:POSITIVE
  logo