Summary of Study ST001505

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001015. The data can be accessed directly via it's Project DOI: 10.21228/M8H40X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001505
Study TitleMetabolomics reveals the protective effect of isosteviol sodium against multiple organ injury in septic mice - Plasma
Study SummarySepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and anticancer activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, and reduced the production of inflammatory cytokines. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
Institute
Guangdong University of Technology
Last NameWang
First NameShanping
AddressNo. 100, Waihuan Xilu, Guangzhou Higher Education Mega Center, Panyu District,
Emailshanpingwang@outlook.com
Phone15521002792
Submit Date2020-09-29
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2021-03-01
Release Version1
Shanping Wang Shanping Wang
https://dx.doi.org/10.21228/M8H40X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002494 AN002495
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Waters Acquity BEH C18 (50 x 2.1mm,1.7um) Waters Acquity BEH C18 (50 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Bruker TIMS TOF Bruker TIMS TOF
Ion Mode POSITIVE NEGATIVE
Units Intensity Intensity

MS:

MS ID:MS002314
Analysis ID:AN002494
Instrument Name:Bruker TIMS TOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:MSMS Progenesis QI 2.1 software EZinfo 3.0 software
Ion Mode:POSITIVE
Analysis Protocol File:shanpingwang_Analysis_Protocol.docx
  
MS ID:MS002315
Analysis ID:AN002495
Instrument Name:Bruker TIMS TOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:MSMS Progenesis QI 2.1 software EZinfo 3.0 software
Ion Mode:NEGATIVE
Analysis Protocol File:shanpingwang_Analysis_Protocol.docx
  logo