Summary of Study ST001747

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001119. The data can be accessed directly via it's Project DOI: 10.21228/M82D8P This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001747
Study TitleLung metabolomics after ischemic acute kidney injury reveals increased oxidative stress, altered energy production, and ATP depletion
Study SummaryAcute kidney injury (AKI) is a complex disease associated with increased mortality that may be due to deleterious distant organ effects. AKI associated with respiratory complications, in particular, has a poor outcome. In murine models, AKI is characterized by increased circulating cytokines, lung chemokine upregulation, and neutrophilic infiltration, similar to other causes of indirect acute lung injury (ALI)(e.g., sepsis). Many causes of lung inflammation are associated with a lung metabolic profile characterized by increased oxidative stress, a shift towards the use of other forms of energy production, and/or a depleted energy state. To our knowledge, there are no studies that have evaluated pulmonary energy production and metabolism after AKI. We hypothesized that based on the parallels between inflammatory acute lung injury and AKI-mediated lung injury, a similar metabolic profile would be observed. Lung metabolomics and ATP levels were assessed 4 hours, 24 hours, and 7 days after ischemic AKI in mice. Numerous novel findings regarding the effect of AKI on the lung were observed including 1) increased oxidative stress, 2) a shift toward alternate methods of energy production, and 3) depleted levels of ATP. The findings in this report bring to light novel characteristics of AKI-mediated lung injury and provide new leads into the mechanisms by which AKI in patients predisposes to pulmonary complications.
Institute
University of Colorado Anschutz Medical Campus
Last NameHaines
First NameJulie
Address12801 E 17th Ave, Room 1303
Emailjulie.haines@cuanschutz.edu
Phone3037243339
Submit Date2021-04-15
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-05-04
Release Version1
Julie Haines Julie Haines
https://dx.doi.org/10.21228/M82D8P
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002843 AN002844
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Phenomenex Kinetex C18 (150 x 2.1mm,1.7um) Phenomenex Kinetex C18 (150 x 2.1mm,1.7um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode NEGATIVE POSITIVE
Units peak area peak area

MS:

MS ID:MS002636
Analysis ID:AN002843
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The UHPLC system was coupled online with a QExactive mass spectrometer (Thermo, San Jose, CA, USA), scanning in Full MS mode (2 μscans) at 70,000 resolution from 60-900 m/z, with 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas, operated in positive ion mode. Calibration was performed before each analysis using a positive calibration mix (Piercenet – Thermo Fisher, Rockford, IL, USA). Limits of detection (LOD) were characterized by determining the smallest injected amino acid amount required to provide a signal to noise (S/N) ratio greater than three using < 5 ppm error on the accurate intact mass. Based on a conservative definition for Limit of Quantitation (LOQ), these values were calculated to be three fold higher than determined LODs. MS data acquired from the QExactive was converted from .raw file format to.mzXML format using MassMatrix (Cleveland, OH, USA). Amino acid assignments were performed using MAVEN (Princeton, NJ, USA). The MAVEN software platform provides tools for peak picking, feature detection and metabolite assignment against the KEGG pathway database. Assignments were further confirmed using a process for chemical formula determination using isotopic patterns and accurate intact mass (Clasquin et al. 2012). Analyte retention times were confirmed by comparison with external standard retention times, as indicated above.
Ion Mode:NEGATIVE
  
MS ID:MS002637
Analysis ID:AN002844
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The UHPLC system was coupled online with a QExactive mass spectrometer (Thermo, San Jose, CA, USA), scanning in Full MS mode (2 μscans) at 70,000 resolution from 60-900 m/z, with 4 kV spray voltage, 15 sheath gas and 5 auxiliary gas, operated in positive ion mode. Calibration was performed before each analysis using a positive calibration mix (Piercenet – Thermo Fisher, Rockford, IL, USA). Limits of detection (LOD) were characterized by determining the smallest injected amino acid amount required to provide a signal to noise (S/N) ratio greater than three using < 5 ppm error on the accurate intact mass. Based on a conservative definition for Limit of Quantitation (LOQ), these values were calculated to be three fold higher than determined LODs. MS data acquired from the QExactive was converted from .raw file format to.mzXML format using MassMatrix (Cleveland, OH, USA). Amino acid assignments were performed using MAVEN (Princeton, NJ, USA). The MAVEN software platform provides tools for peak picking, feature detection and metabolite assignment against the KEGG pathway database. Assignments were further confirmed using a process for chemical formula determination using isotopic patterns and accurate intact mass (Clasquin et al. 2012). Analyte retention times were confirmed by comparison with external standard retention times, as indicated above.
Ion Mode:POSITIVE
  logo