Summary of Study ST001499

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001015. The data can be accessed directly via it's Project DOI: 10.21228/M8H40X This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001499
Study TitleMetabolomics reveals the protective effect of isosteviol sodium against multiple organ injury in septic mice - Heart
Study SummarySepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and anticancer activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, and reduced the production of inflammatory cytokines. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis. Mice are randomly assigned to 4 groups in study design. Control: saline + saline Model: saline + LPS; Treatment: STV-Na + LPS; Positive: dexamethasone (Dex) + LPS. Drugs were administered i.p. Six hours after LPS injection, mice were sacrificed. And blood and tissues (heart, lung, liver, spleen and kidney) were subjected to UHPLC-TIMS TOF MS/MS-based metabolomics analyses.
Institute
Guangdong University of Technology
Last NameWang
First NameShanping
AddressNo. 100, Waihuan Xilu, Guangzhou Higher Education Mega Center, Panyu District,
Emailshanpingwang@outlook.com
Phone15521002792
Submit Date2020-09-29
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailLC-MS
Release Date2021-03-01
Release Version1
Shanping Wang Shanping Wang
https://dx.doi.org/10.21228/M8H40X
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP001581
Sampleprep Summary:A total of 160 µL of MTBE solution (methyl-T-butyl-ether: methanol: water, 6/3/1, v/v/v) was applied to 40 µL of the plasma or tissue homogenate supernatant, vortexed for 30 min at 4°C and spun at 12,000 rpm for 30 min. Two extract components were produced: an organic hydrophobic layer and a hydrophilic layer. These two extracts were vacuum-dried and dissolved in 0.1% (v/v) formic acid in water (45 µL), followed by analysis. The pooled quality control (QC) samples including whole plasma and tissues were utilized for monitoring data acquisition performance throughout the analysis. Finally, 6 duplicate QC samples were prepared and injected at the start of the sequence, and after each of the six tissue samples was inserted, the QC samples were added to determine system stability.
Sampleprep Protocol Filename:shanpingwang_Sampleprep_protocol.docx
shanpingwang_Treatment_Protocol.docx
  logo