Summary of Study ST001843

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000667. The data can be accessed directly via it's Project DOI: 10.21228/M8FX07 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001843
Study TitleIdentification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part II)
Study SummaryNonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology ranging from simple steatosis to nonalcoholic steatohepatitis (NASH); the latter is characterized by inflammation and fibrosis. Risk factors for NALFD include obesity, diabetes, hyperlipidemia, and hypertension—all of which are features of metabolic syndrome. NAFLD is a very heterogeneous disease, as it presents in different patterns in males and females and in patients from different ethnicities, with unclear predictors for development and severity of disease. Previous studies have shown that NAFLD is 1.4 times more frequent in Hispanics than in Caucasians. One of the major challenges in NAFLD is the lack of accurate, noninvasive biomarkers for the detection of the most aggressive presentation, NASH. The gold standard for the diagnosis is liver biopsy, which is an invasive procedure associated with possible complications. Noninvasive diagnosis of NASH is a major unmet medical need and there are no ethnicity-specific biomarkers that can diagnose this condition and predict its progression. Therefore, the main gap in knowledge that this proposal and line of research will address is the characterizing the different plasma and liver metabolomics profile of patients with fatty liver from two ethnicities (Latinos vs. Caucasians) and of both sexes. The overall hypothesis of the present study is that the higher incidence of nonalcoholic fatty liver (NAFL) in Latino patients is reflected in a different plasma and liver metabolomics profile compared to Caucasian patients with further sex-related differences. Characterization of metabolite networks can aid in identifying the mechanistic underpinnings of sex and ethnic driven differences in NAFL which could help diagnose and establish a prognosis of this condition, especially in the critical transition from NAFL to the more aggressive nonalcoholic steatohepatitis (NASH).To address this hypothesis, plasma metabolomics profile of samples from male and female Latino and Caucasian bariatric surgery patients with NAFL and from healthy subjects will be compared. Metabolomics findings will be related with liver pathology and liver transcriptome profiles from intraoperatively obtained liver biopsies using correlation, network, and pathway analysis.
Institute
University of California, Davis
DepartmentDepartment of Internal Medicine, Division of Gastroenterology and Hepatology
LaboratoryMedici Lab
Last NameMedici
First NameValentina
Address4150 V Street - PSSB Suite 3500 - 95817 Sacramento CA
Emailvmedici@ucdavis.edu
Phone(916) 734 3751
Submit Date2021-06-10
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailGC-MS
Release Date2021-07-05
Release Version1
Valentina Medici Valentina Medici
https://dx.doi.org/10.21228/M8FX07
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000667
Project DOI:doi: 10.21228/M8FX07
Project Title:Identification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD)
Project Summary:Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology ranging from simple steatosis to nonalcoholic steatohepatitis (NASH); the latter is characterized by inflammation and fibrosis. Risk factors for NALFD include obesity, diabetes, hyperlipidemia, and hypertension—all of which are features of metabolic syndrome. NAFLD is a very heterogeneous disease, as it presents in different patterns in males and females and in patients from different ethnicities, with unclear predictors for development and severity of disease. Previous studies have shown that NAFLD is 1.4 times more frequent in Hispanics than in Caucasians. One of the major challenges in NAFLD is the lack of accurate, noninvasive biomarkers for the detection of the most aggressive presentation, NASH. The gold standard for the diagnosis is liver biopsy, which is an invasive procedure associated with possible complications. Noninvasive diagnosis of NASH is a major unmet medical need and there are no ethnicity-specific biomarkers that can diagnose this condition and predict its progression. Therefore, the main gap in knowledge that this proposal and line of research will address is the characterizing the different plasma and liver metabolomics profile of patients with fatty liver from two ethnicities (Latinos vs. Caucasians) and of both sexes. The overall hypothesis of the present study is that the higher incidence of nonalcoholic fatty liver (NAFL) in Latino patients is reflected in a different plasma and liver metabolomics profile compared to Caucasian patients with further sex-related differences. Characterization of metabolite networks can aid in identifying the mechanistic underpinnings of sex and ethnic driven differences in NAFL which could help diagnose and establish a prognosis of this condition, especially in the critical transition from NAFL to the more aggressive nonalcoholic steatohepatitis (NASH).To address this hypothesis, plasma metabolomics profile of samples from male and female Latino and Caucasian bariatric surgery patients with NAFL and from healthy subjects will be compared. Metabolomics findings will be related with liver pathology and liver transcriptome profiles from intraoperatively obtained liver biopsies using correlation, network, and pathway analysis.
Institute:University of California, Davis
Department:Department of Internal Medicine, Division of Gastroenterology and Hepatology
Laboratory:Medici Lab
Last Name:Medici
First Name:Valentina
Address:GI and Hepatology Division Academic Office - 4150 V Street - PSSB Suite 3500 - 95817 Sacramento CA
Email:vmedici@ucdavis.edu
Phone:(916) 734 3751

Subject:

Subject ID:SU001920
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606
Age Or Age Range:23-73
Gender:Male and female
Human Race:Hispanic and Caucasian

Factors:

Subject type: Human; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id organ Diagnosis
SA171524BSU-0187Liver NAFLD
SA171525B-1513Liver NAFLD
SA171526B-1342Liver NAFLD
SA171527B-1501Liver NAFLD
SA171528B-1441Liver NAFLD
SA171529B-0286Liver NAFLD
SA171530B-1297Liver NAFLD
SA171531BSU-0146Liver NAFLD
SA171532BSU-0197Liver NAFLD
SA171533B-0193Liver NAFLD
SA171534B-0254Liver NAFLD
SA171535B-0269Liver NAFLD
SA171536B-1405Liver NAFLD
SA171537B-0262Liver NAFLD
SA171538B-1432Liver NAFLD
SA171539B-1371Liver NAFLD
SA171540B-1156Liver NAFLD
SA171541B-1148Liver NAFLD
SA171542B-0945Liver NAFLD
SA171543B-1184Liver NAFLD
SA171544M2Plasma Healthy Control
SA171545HC122Plasma Healthy Control
SA171546HC121Plasma Healthy Control
SA171547HC126Plasma Healthy Control
SA171548K10Plasma Healthy Control
SA171549HC117Plasma Healthy Control
SA171550HC128Plasma Healthy Control
SA171551K9Plasma Healthy Control
SA171552HC105Plasma Healthy Control
SA171553HC127Plasma Healthy Control
SA171554110Plasma Healthy Control
SA171555151Plasma Healthy Control
SA17155680Plasma Healthy Control
SA17155710Plasma Healthy Control
SA1715582Plasma Healthy Control
SA171559175Plasma Healthy Control
SA17156026Plasma Healthy Control
SA171561197Plasma Healthy Control
SA171562343Plasma Healthy Control
SA171563316Plasma Healthy Control
SA171564204Plasma Healthy Control
SA171565236Plasma Healthy Control
SA171566P-3266Plasma NAFLD
SA171567P-3182Plasma NAFLD
SA171568P-0788Plasma NAFLD
SA171569P-0320Plasma NAFLD
SA171570P-0185Plasma NAFLD
SA171571P-1010Plasma NAFLD
SA171572P-0432Plasma NAFLD
SA171573P-1006Plasma NAFLD
SA171574P-0361Plasma NAFLD
SA171575P-3011Plasma NAFLD
SA171576P-3227Plasma NAFLD
SA171577P-3194Plasma NAFLD
SA171578P-3242Plasma NAFLD
SA171579P-0796Plasma NAFLD
SA171580P-3200Plasma NAFLD
SA171581P-3043Plasma NAFLD
SA171582P-3008Plasma NAFLD
SA171583P-2546Plasma NAFLD
Showing results 1 to 60 of 60

Collection:

Collection ID:CO001913
Collection Summary:Blood was collected as a part of a routine/pre-operation check up, not more than 2 weeks prior to operation day (bariatric surgery) for the NAFLD group and among normal BMI healthy volunteers for the control group. All volunteers were fasted 10-12 hours before collection. Liver obtained during surgery (no preservatives, flash-frozen)
Sample Type:Blood, Liver

Treatment:

Treatment ID:TR001932
Treatment Summary:Subjects were divided into two groups either: Healthy control or Nonalcoholic fatty liver disease (NAFLD)

Sample Preparation:

Sampleprep ID:SP001926
Sampleprep Summary:Sample preparation of blood plasma or serum samples for CSH, HILIC and GC analysis Purpose: This SOP describes sample extraction and preparation of blood plasma or serum for lipid profiling on the CSH, and HILIC platform by liquid chromatography/ mass spectrometry (LC-MS) as well as primary metabolomics platform on GC/MS. This method is to be used when there is low sample volume for separate extractions, and when more than one platform is to be used in a project. References: Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A and Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lip Res 2008, 49: 1137-1146 Starting material: Plasma/serum: 20 µL sample volume or aliquot Equipment: Centrifuge Eppendorf 5415 D Calibrated pipettes 20-200µL and 100-1000µL Multi-Tube Vortexer (VWR VX-2500) Orbital Mixing Chilling/Heating Plate (Torrey Pines Scientific Instruments) Speed vacuum concentration system (Labconco Centrivap cold trap) Chemicals: Product Manufacturer & Part Number Eppendorf tubes 1.5 mL, uncolored Eppendorf 022363204 Eppendorf tubes 2 mL, uncolored Eppendorf 022363352 Crushed ice UC Davis Water, LC/MS Grade Fisher Optima W6-4 MTBE, HPLC Grade Acros Organics 389050010 Methanol, LC/MS Grade Fisher A456-4 Bioreclamation human plasma (disodium EDTA) Bioreclamation HMPLEDTA Acetonitrile, HPLC Grade Fisher Optima A955-4 Iso-Propanol, HPLC Grade Fisher A461-4 Sample Preparation: Preparation of extraction solvent Combine 120 mL of chilled MeOH/QC mix with 400 mL of chilled MTBE/Cholesterol Ester 22:1 in a clean 500 mL stock bottle. Mix thoroughly by swirling or stir plate and store at -20°C until use. *See SOP “QC mix for LC-MS lipid analysis” for preparation of MeOH/QC mix and MTBE/Cholesterol Ester 22:1. Preparation of Clean Up solvent For 1 L of extraction solvent, combine 375 mL of acetonitrile, 375 mL of isopropanol, and 250 mL water in a 1 L bottle conditioned with the aforementioned chemicals. If a different total volume of extraction solvent is needed, simply mix acetonitrile, isopropanol, and water in volumes in proportion 3:3:2. Purge the extraction solution mix for 5 min with nitrogen with small bubbles. Make sure that the nitrogen line is flushed out of air before using it for degassing the extraction solvent solution. Store at -20°C until use. Note: if solvent freezes, sonicate until thawed and mix before use. Extraction Thaw raw samples/controls at room temperature (or in the refrigerator at 4˚C) and either invert the tube or vortex 10 sec at low speed to homogenize. Aliquot 20 μL of plasma sample into a 1.5 mL Eppendorf tube. Keep all samples on ice. Add 975 µL ice-cold 3:10 (v/v) MeOH/MTBE + QC mix/CE 22:1 extraction solvent mixture to each aliquot, keeping the extraction solvent on ice during the procedure. Vortex samples for 10 seconds, then shake for 5 minutes at 4°C on the orbital mixer. Add 188 µL room temperature LC/MS grade water to each tube. Vortex tubes for 20 seconds and then centrifuge for 2 min at 14,000 rcf. Transfer the upper organic phase to two separate tubes (350 µL/each tube) for lipidomics analysis. Transfer 75 µL of the remaining organic phase to a 2, 15, or 50 mL tube for pools, depending on number of samples in the study. Transfer the bottom aqueous phase to two separate tubes (110 µL/each tube) for HILIC/GC-TOF analysis. Dry down one tube from each phase by centrivap, keeping the undried tubes as backups. Store all tubes at -20˚C until ready for analysis. Clean up step for GC only (and pooling) Resuspend the dried aliquot with 500 μL 3:3:2 (v/v/v) ACN:IPA:H2O (degassed as given above) and vortex for about 10 sec. Centrifuge for 2 min at 14000 rcf. Remove 450 uL supernatant to a clean 1.5 mL eppendorf tube. Tranfering remainder to a 2, 15, 50 mL Tube, dependent on number of samples. Aliquot out 1.9 mL uL of supernatant to new 2ml eppendorf tubes. Centrifuge for 2 min at 14000 rcf Aliquot out 4x450 uL of supernatant into clean 1.5 mL Eppendorf tubes. Evaporate to comeplete dryness in the Labconco Centruvap cold trap concentrator. Submit to derivatization . Pooling (CSH platform only) Transfer multiple 350 µL aliquots of pooled samples to 1.5 mL Eppendorf tubes, one aliquot for every 10 samples in the study. If there is still pool remaining, prepare additional aliquots for backup. Evaporate to complete dryness in the Labconco Centrivap cold trap concentrator. Store all tubes at -20°C until ready for analysis. Quality assurance For every 10 samples, extract a method blank (20 µL of H2O) and a sample control (20 µL human Bioreclamation or analogous species plasma) in addition to samples. For large studies (>100 samples), for every 100 samples a NIST plasma extract should be prepared in the same manner as positive controls. Disposal of waste Collect all chemicals in appropriate bottles and follow the disposal rules. Collect residual plasma/serum samples in specifically designed red ‘biohazard’ waste bags. Extraction of Mammalian Tissue Samples: Liver 1. References: Fiehn O, Kind T (2006) Metabolite profiling in blood plasma. In: Metabolomics: Methods and Protocols. Weckwerth W (ed.), Humana Press, Totowa NJ (in press) 2.Starting material: Liver sample: weigh 4mg per sample into 2mL Eppendorf tubes. 3. Equipment: Centrifuge (Eppendorf 5415 D) Calibrated pipettes 1-200μl and 100-1000μl Eppendorf tubes 2mL, clear (Cat. No. 022363204) Centrifuge tubes 50mL, polypropylene Eppendorff Tabletop Centrifuge (Proteomics core Lab.) ThermoElectron Neslab RTE 740 cooling bath at –20°C MiniVortexer (VWR) Orbital Mixing Chilling/Heating Plate (Torrey Pines Scientific Instruments) Speed vacuum concentration system (Labconco Centrivap cold trap) Turex mini homogenizer 4. Chemicals Acetonitrile, LCMS grade (JT Baker; Cat. No.9829-02) Isopropanol, HPLC grade (JT Baker; Cat. No. 9095-02) Methanol Acetone Crushed ice 18 MΩ pure water (Millipore) Nitrogen line with pipette tip pH paper 5-10 (EMD Chem. Inc.) 5. Procedure Preparation of extraction mix and material before experiment: Switch on bath to pre-cool at –20°C (±2°C validity temperature range) Check pH of acetonitrile and isopropanol (pH7) using wetted pH paper Make the extraction solution by mixing acetonitrile, isopropanol and water in proportions 3 : 3 : 2 De-gas the extraction solution for 5 min with nitrogen. Make sure that the nitrogen line was flushed out of air before using it for degassing the extraction solvent solution Sample Preparation Weigh 4mg tissue sample in to a 2mL Eppendorf tube. Add 1mL extraction solvent to the tissue sample and homogenize for 45 seconds ensuring that sample resembles a powder. In between samples, clean the homogenizer in solutions of methanol, acetone, water, and the extraction solvent in the order listed. Vortex samples for 10 seconds, then 5 minutes on 4°C shaker. Centrifuge the samples for 2 minutes at 14,000 rcf. Aliquot 500µL supernatant for analysis, and 500µL for a backup. Store backup aliquots in the -20°C freezer. Evaporate one 500µl analysis aliquot in the Labconco Centrivap cold trap concentrator to complete dryness (typically overnight). The dried aliquot is then re-suspended with 500μl 50% acetonitrile (degassed as given) Centrifuge for 2 minutes at 14,000 rcf using the centrifuge Eppendorf 5415. Remove supernatant to a new Eppendorf tube. Evaporate the supernatant to dryness in the the Labconco Centrivap cold trap concentrator. Submit to derivatization. The residue should contain membrane lipids because these are supposedly not soluble enough to be found in the 50% acetonitrile solution. Therefore, this ‘membrane residue’ is now taken for membrane lipidomic fingerprinting using the nanomate LTQ ion trap mass spectrometer. Likely, a good solvent to redissolve the membrane lipids is e.g. 75% isopropanol (degassed as given above). If the ‘analysis’ aliquot is to be used for semi lipophilic compounds such as tyrosine pathway intermediates (incl. dopamine, serotonine etc, i.e. polar aromatic compounds), then these are supposedly to be found together with the ‘GCTOF’ aliquot. We can assume that this mixture is still too complex for Agilent chipLCMS. Therefore, in order to develop and validate target analysis for such aromatic compounds, we should use some sort of Solid Phase purification. We re-suspend the dried ‘GCTOF’ aliquot in 300 l water (degassed as before) to take out sugars, aliphatic amino acids, hydroxyl acids and similar logP compounds. The residue should contain our target aromatics .We could also try to adjust pH by using low concentration acetate or phosphate buffer. The residue could then be taken up in 50% acetonitrile and used for GCTOF and Agilent chipMS experiments. The other aliquot should be checked how much of our target compounds would actually be found in the ‘sugar’ fraction. 6. Problems To prevent contamination disposable material is used. Control pH from extraction mix. 7. Quality assurance For each sequence of sample extractions, perform one blank negative control extraction by applying the total procedure (i.e. all materials and plastic ware) without biological sample. 8. Disposal of waste Collect all chemicals in appropriate bottles and follow the disposal rules.

Combined analysis:

Analysis ID AN002986
Analysis type MS
Chromatography type Reversed phase
Chromatography system Agilent 6550
Column Waters Acquity BEH C18 (100 x 2mm,1.7um)
MS Type EI
MS instrument type CSH
MS instrument name Agilent 6550 QTOF
Ion Mode UNSPECIFIED
Units normalized peak height

Chromatography:

Chromatography ID:CH002215
Chromatography Summary:Complex lipids by LC QTOF CSH
Instrument Name:Agilent 6550
Column Name:Waters Acquity BEH C18 (100 x 2mm,1.7um)
Column Temperature:65
Flow Gradient:0 min 85% (A); 0-2 min 70% (A); 2-2.5 min 52% (A); 2.5-11 min 18% (A); 11-11.5 min 1% (A); 11.5-12 min 1% (A); 12-12.1 min 85% (A); 12.1-15 min 85% (A)
Flow Rate:0.6 mL/min
Solvent A:60% acetonitrile/40% water; 0.1% formic acid ; 10 mM ammonium formate
Solvent B:90% isopropanol/10% acetonitrile; 0.1% formic acid ; 10 mM ammonium formate
Chromatography Type:Reversed phase

MS:

MS ID:MS002776
Analysis ID:AN002986
Instrument Name:Agilent 6550 QTOF
Instrument Type:CSH
MS Type:EI
MS Comments:LC/MS parameters The LC/QTOFMS analyses are performed using an Agilent 1290 Infinity LC system (G4220A binary pump, G4226A autosampler, and G1316C Column Thermostat) coupled to either an Agilent 6530 (positive ion mode) or an Agilent 6550 mass spectrometer equipped with an ion funnel (iFunnel) (negative ion mode). Lipids are separated on an Acquity UPLC CSH C18 column (100 x 2.1 mm; 1.7 µm) maintained at 65°C at a flow-rate of 0.6 mL/min. Solvent pre-heating (Agilent G1316) was used. The mobile phases consist of 60:40 acetonitrile:water with 10 mM ammonium formate and 0.1% formic acid (A) and 90:10 propan-2-ol:acetonitrile with 10 mM ammonium formate and 0.1% formic acid. The gradient is as follows: 0 min 85% (A); 0–2 min 70% (A); 2–2.5 min 52% (A); 2.5–11 min 18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 12–12.1 min 85% (A); 12.1–15 min 85% (A). A sample volume of 3 µL is used for the injection. Sample temperature is maintained at 4°C in the autosampler. The quadrupole/time-of-flight (QTOF) mass spectrometers are operated with electrospray ionization (ESI) performing full scan in the mass range m/z 65–1700 in positive (Agilent 6530, equipped with a JetStreamSource) and negative (Agilent 6550, equipped with a dual JetStream Source) modes producing both unique and complementary spectra. Instrument parameters are as follows (positive mode) Gas Temp 325°C, Gas Flow 8 l/min, Nebulizer 35 psig, Sheath Gas 350°C, Sheath Gas Flow 11, Capillary Voltage 3500 V, Nozzle Voltage 1000V, Fragmentor 120V, Skimmer 65V. Data (both profile and centroid) are collected at a rate of 2 scans per second. In negative ion mode, Gas Temp 200°C, Gas Flow 14 l/min, Fragmentor 175V, with the other parameters identical to positive ion mode. For the 6530 QTOF, a reference solution generating ions of 121.050 and 922.007 m/z in positive mode and 119.036 and 966.0007 m/z in negative mode, and these are used for continuous mass correction. For the 6550, the reference solution is introduced via a dual spray ESI, with the same ions and continuous mass correction. Samples are injected (1.7 μl in positive mode and 5 μl in negative ion mode) with a needle wash for 20 seconds (wash solvent is isopropanol). The valve is switched back and forth during the run for washing; this has been shown to be essential for reducing carryover of less polar lipids.
Ion Mode:UNSPECIFIED
  logo