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pathways, covered by other matrices, are missed. To address this problem, this study presents a unique
multi-matrix platform for polar metabolic fingerprinting of feces, plasma and urine, applying ultra-high
performance liquid-chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass
spectrometry, that is able to achieve a significantly higher coverage of the system's metabolome and
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Urine number of endogenous metabolites were measured in representative quality control samples. For tar-
UHPLC-Q-exactive™ orbitrap HRMS geted and untargeted validation of all three matrices, excellent linearity (coefficients of determination
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Polar metabolomics
Metabolic fingerprinting

R? > 0.99 or 0.90 respectively), recovery and precision (coefficients of variance < 15% or 30% respectively)
were observed. The potential of the platform was demonstrated by subjecting fecal, urine and plasma

samples (collected within one day) from ten healthy volunteers to metabolic fingerprinting, yielding
respectively 9 672, 9 647, and 6122 components. Orthogonal partial least-squares discriminant analysis
provided similar results for feces and plasma to discriminate according to gender (p-value, R*(X), RA(Y)
and QX(Y)), suggesting feces as an excellent alternative biofluid to plasma. Moreover, combining the
different matrices improved the model's predictivity, indicating the superiority of multi-matrix platforms
for research purposes in biomarker detection or pathway elucidation and in the selection of the most
optimal matrix for future clinical purposes.

© 2018 Published by Elsevier B.V.

1. Introduction

The metabolome comprises a diverse array of biomolecules and
is regarded as the ultimate endpoint of the biological cascade in
which transcription, translation, and protein functioning constitute
the preceding phases. As such, the metabolome has been
acknowledged as the best reflection of the biological phenotype
and is therefore frequently targeted in life science research, thereby
implementing a strategy of so-called metabolomics [1]. This holistic
top-down analytical approach attempts to map the metabolome of
the biological system under investigation and underpin the com-
plex interactions between the host, its commensal microbial
community, and other exposomal factors such as diet, stress, age,
and lifestyle [2,3]. Moreover, as the metabolome captures
metabolic-induced changes in a direct manner, metabolomics
represents an ideal strategy to deepen the knowledge about
metabolic anomalies and (patho)physiological pathways, which
has for example been achieved for type 2 diabetes, Crohn's disease,
cancer, atherosclerosis, cardiovascular disease, etc. [4—8]. An
informed perspective will eventually provide clinicians and in-
dividuals alike with actionable information for managing health.

Unfortunately, due to the high chemical diversity among me-
tabolites, it is currently not possible to measure the entire metab-
olome using a single analytical strategy [9]. In this context, one
tends to segregate the non-polar (lipidome) and polar metabolome
fraction when implementing metabolomics. Concurrent measure-
ment of both fractions is of course most designated as comple-
mentary or interlinked metabolic pathways may be revealed upon
completion of the metabolomics workflow. However, proposed
mechanistic hypotheses in relation to the clinical condition may
point towards the measurement of one particular metabolome
fraction as the best starting point. Additionally, selection of a proper
biological matrix in terms of practical (invasive or non-invasive)
and/or clinical (close metabolic linkage to the clinical condition)
fitness must be considered as well. Most commonly used speci-
mens within routine clinical research are urine, blood plasma or
serum, and to a lesser extent feces, each with its specific
characteristics.

Blood transports chemicals to and from tissues, thus repre-
senting a valuable reservoir of endogenous and exogenous chem-
icals in the body. Moreover, as both polar and non-polar
metabolites are present in this matrix, the range of biochemical
processes that may be reflected by the blood metabolome is
strongly extended. As such, implementing blood metabolomics is
considered adequate to assess a plethora of metabolic diseases, as
these have been listed in the review of Duarte, Diaz and Gil [10].
Moreover, blood metabolomics is highly suited for assessing and
understanding acute illnesses such as sepsis [11]. Based on these
elements, blood metabolomics has already rendered multiple
marker molecules from various chemical classes and for diverse
clinical conditions, contributing to a better understanding of the

pathophysiological pathways involved [12—17]. When using blood
plasma or serum, one of the major drawbacks, is the invasive nature
of sample collection, which is especially problematic in (young)
children, those in whom venous access is problematic, and those
that are averse to blood sampling. In this context, urine represents
an interesting alternative as it is easy to obtain in large volumes,
sterile, relatively stable, largely free from interfering proteins or
lipids, and chemically complex [3,18]. Urine typically contains
metabolic breakdown products from a wide range of foods, drinks,
drugs, environmental contaminants, endogenous waste metabo-
lites and bacterial by-products. As these waste products are water-
soluble, the diversity in chemical functionalities and biological
pathways is somewhat limited compared to blood. In addition,
urine is also more prone to the influence of diet and diurnal vari-
ation [8,19,20]. Nevertheless, also urinary metabolomics may reveal
clinically valuable marker molecules, which is supported by the fact
that dipstick tests are today routinely used to measure for example
urinary glucose, bilirubin, ketone bodies, nitrates, leukocyte,
esterase, hemoglobin, and urobilinogen. The review of Duarte, Diaz
and Gil [10] provides a comprehensive overview of those disorders
in which metabolic profiling or fingerprinting of urine yielded
descriptive marker molecules. Eventually, the use of fecal samples
in metabolomics is becoming increasingly popular, although not
yet at the same level of blood or urine. A major motivation to
consider fecal material relates to the fact that the inherent
metabolome most efficiently captures the complex interactions
between the gut microbiome, the host and the diet [4,21—24].
Indeed, there is an increasing awareness that the gut microbiota
play a crucial role in the etiology of multiple gastrointestinal dis-
eases by regulating various host metabolic pathways [22]. As such,
dysbiosis of the gut microbial community has for example been
correlated with obesity, rheumatoid arthritis, autism, food allergy,
cardiovascular disease and type 2 diabetes. In this context, own
work demonstrated significant differences in the fecal metabolome
when comparing patients with type 2 diabetes or inflammatory
bowel disease to healthy controls [22,25—27]. In contrast to blood,
feces (and urine) are considered more suited to depict chronic ill-
nesses, with the fecal metabolome providing valuable insights into
the metabolic and biological activities that precede the sampling
moment [28]. Typical targets that may serve as candidate fecal
markers are short chain fatty acids, sterols and bile acids.
Although top-down systems biology by analysis of metabolic
fingerprints has already rendered promising results in terms of
biomarker revelation and pathway elucidation, the vast majority of
these studies tend to focus on a single biological matrix. Obviously,
in that way, crucial marker molecules of complementary physio-
logical pathways — that are expressed more clearly or uniquely in
an alternative biological matrix — can be missed [29]. Combining
data from various matrices is presumed to reveal interesting cor-
relations across matrices, which may aid in understanding meta-
bolic mechanisms and qualify revealed biomarkers in a clinical
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context. Therefore, we propose the strategy of multi-matrix
metabolomics; analyzing multiple biological specimens (feces,
blood plasma, and urine) from the same individual on a single
analytical platform. So far, the use of a multi-matrix platform has
only been reported by Zhao, Ni, Su, Li, Dong, Chen, Wei, Zhang,
Guiraud, Martin, Rajani, Xie and Jia [30], thereby conducting
metabolic profiling for feces, urine, and serum in a targeted
microbiome metabolic study. However, to discover potential dis-
ease biomarkers, a truly untargeted fingerprinting strategy is more
preferable to a profiling approach as the latter depends on a priori
knowledge. As such, this study is the first to establish a multi-
matrix strategy that is suited for untargeted fingerprinting of the
polar metabolome fraction, and this for feces, urine, and blood
plasma. Whereas extraction of each matrix type was separately
optimized using a chemometrics strategy, full-scan analysis was
performed by ultra-high performance liquid-chromatography
(UHPLC) coupled to hybrid quadrupole-Orbitrap high-resolution
mass spectrometry (HRMS) with a fixed hardware configuration.
Indeed, an optimal and single setting with respect to the
exchangeable hardware parts (i.e. LC-column, solvents, ionization
source and position) allows to perform continuous and sequential
analysis of samples from different matrix types, without any need
to intervene. The strengths of multi-matrix fingerprinting
compared to single-matrix analysis were demonstrated on a cohort
of healthy volunteers, revealing gender-related metabolic
differences.

2. Materials and methods
2.1. Reagents and chemicals

Analytical standards (Table S1) and internal standards (ISTD) (p-
valine-d8, r-alanine-d3) were purchased from Sigma-Aldrich (St-
Louis, Missouri, USA), ICN Biomedicals Inc. (Ohio, USA), TLC
Pharmchem (Vaughan, Ontario, Canada) or Cambridge Isotope
Laboraties Inc. (Tewksbury, Massachusetts, USA). Solvents were
obtained from Fisher Scientific (Loughborough, UK) and VWR In-
ternational (Merck, Darmstadt, Germany). Ultrapure water was
obtained by usage of a purified-water system (Millipore, Brussels,
Belgium).

2.2. Instrumentation

UHPLC-Quadrupole-Orbitrap HRMS analysis was based on the
validated method of Vanden Bussche, Marzorati, Laukens and
Vanhaecke [22]. In brief, chromatographic separation was achieved
on a Dionex UltiMate 3000 XRS UHPLC system (Thermo Fisher
Scientific, San José, CA, USA), equipped with an Acquity HSS T3 C18
column (1.8 pm, 150 x 2.1 mm) (Waters, Manchester, UK), kept at a
constant temperature of 45 °C. A binary solvent system consisting
of ultrapure water (A) and acetonitrile (B), both acidified with 0.1%
formic acid, was used at a constant flow rate of 0.4 mLmin . A
gradient profile with following proportions (v/v) of solvent A was
applied: 0—1.5minat 98%, 1.5—70min from 98% to 75%,
7.0—-8.0 min from 75% to 40%, 8.0—12.0min from 40% to 5%,
12.0—14.0 min at 5%, 14.0—14.1 min from 5 to 98%, followed by
4.0 min of re-equilibration. A 10-uL aliquot was injected for each
matrix sample. Detection was performed on a Q-Exactive™ stand-
alone bench top quadrupole-Orbitrap high-resolution mass spec-
trometer (Thermo Fisher Scientific, San José, CA, USA), which was
preceded by heated electrospray ionization (HESI-II source) in po-
larity switching mode. The position of the ionization source
remained unchanged for the three matrices, i.e. 0/B/1. lonization
source and instrumental parameters were a sheath, auxiliary and
sweep gas flow rate of, respectively, 50, 25 and 3 arbitrary units

(a.u.), a heater and capillary temperature of 350 °C and 250 °C, an S-
lens RF level of 50V, a spray voltage of + 4.0 kV, an m/z scan range
from 53.4 to 800 Da, and an automatic gain control target of 1e®
ions. The maximum injection time and mass resolution settings
were set at 70ms and 140000 full width at half maximum
(FWHM).

Prior to mass spectrometric detection, initial instrument cali-
bration was achieved by infusing ready-to-use calibration mixtures
(Thermo Fisher Scientific, San José, CA, USA). Before and after
analysis of samples, a standard mixture of 291 target analytes
(Table S1), with a concentration of 5 ng uL~! was injected to check
the operational conditions of the device. To adjust for instrumental
fluctuations, quality control (QC) samples (a pool of samples made
from the biological test samples to be studied) were included. They
were implemented at the beginning of the analytical run to stabi-
lize the system and at the end of the sequence run for signal cor-
rections within analytical batches, and this for each matrix, starting
with the fecal samples, followed by urine and plasma.

Targeted data processing was carried out with Xcalibur 3.0
software (Thermo Fisher Scientific, San José, CA, USA), whereby
compounds were identified based on their m/z-value, C-isotope
profile, and retention time relative to that of the internal standard.
Statistical and pathway analyses were performed by means of SAS
Enterprise Guide 7 (SAS Institute Inc., Cary, USA) and Metab-
oAnalyst 3.0 (Xia Lab, McGill University, Quebec, Canada), respec-
tively. For untargeted data interpretation, the software package
Sieve™ 2.2 (Thermo Fisher Scientific, San José, CA, USA) was used to
achieve automated peak extraction, peak alignment, deconvolu-
tion, and noise removal. As major parameters, a minimum peak
intensity of 500 000 a.u., retention time width of 0.3 min, and mass
window of 6 ppm were employed for feature extraction, with
retention time, m/z-value and signal intensity as main feature de-
scriptors. Outputs of the targeted and untargeted data pre-
processing were subjected to multivariate statistical, which was
realized using Simca™ 14.1 software (Umetrics AB, Umea, Sweden).
Principal component analysis (PCA) was performed for data
exploration, allowing to reveal natural patterning of samples and
potential outliers. This was followed by OPLS-DA to establish pre-
dictive models, which were validated by evaluating some quality
parameters (R*(X) and Q*(Y), permutation testing (n=100), and
cross-validated ANOVA (CV-ANOVA) (p-value < 0.05).

2.3. Sample collection

Feces. The fecal extraction protocol was optimized and validated
on a pool of freeze-dried fecal samples (n = 6). Fecal samples un-
derwent 48 h of lyophilization to warrant the elimination of mi-
crobial activity and facilitate homogenization.

Blood plasma. Plasma was collected in heparin coated tubes.
Method optimization and validation was performed on a pool of
human blood plasma (H2B, ESTER Techopole — 6 allée Skylab —
87068 LIMOGES Cedex — France, Reference 20000P, Batch number:
ED1505003).

Urine. Fasted morning urine was chosen to optimize and validate
the extraction protocol. More specifically, a pool of morning urine
samples (n = 3) was used.

Multi-matrix. To demonstrate the strengths of multi-matrix
fingerprinting, fresh fecal, plasma and urine samples were ob-
tained from healthy male (n=5) and female (n=>5) volunteers
(25—41 years old, normal body mass index) (Table S2), which were
not subjected to any dietary restrictions or antibiotic treatment
during at least 6 months prior to sample donation. Volunteers were
recruited among the laboratory personnel through informal
announcement. Blood samples were collected in heparin tubes and
immediately centrifuged (3000 x g) after which the supernatans
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was collected and stored. Subsequent to the donation of morning
urine and fasted plasma samples, fecal samples were collected with
a Fecotainer® (AT Medical B.V., Enschede, The Netherlands). A delay
in the fecal metabolome on urine and plasma may be expected,
which can be attributed to the gastrointestinal transition time.
However, combining the different matrices will enable the analysis
of the metabolic (patho)-physiologic state of the individual at the
moment of and the period prior to sample collection. Indeed,
plasma collection will provide real-time information, while urine
and fecal samples can provide retrospective information on the
individual's health. After sample collection, plasma and urine
samples were immediately aliquoted and stored at —80 °C, awaiting
analysis. Fecal samples were lyophilized first, which resulted in the
average removal of 71.8% +5.8% water, and subsequently stored
at —80°C. All samples were de-identified and analyzed
anonymously.

This study was approved by the ethical committee of Ghent
University Hospital (EC 2016/0673).

2.4. Development and chemometric optimization of sample
extraction

Development of an individual generic extraction procedure for
each of the three biological matrices relied on a sequential strategy
of experimental designs. Hereby, statistical evaluation by Modde
5.0 (Umetrics, Umea, Sweden) was performed to assess metabolite
coverage based on the absolute number of detected features and
extraction efficiency, deduced from the absolute signal intensity of
a predefined group of endogenous metabolites, which were iden-
tified based on their accurate mass, C-isotope profile and retention
time relative to that of the internal standard. Selection of these
metabolites was executed per matrix type, whereby it was aimed to
have compounds with high endogenous abundance and at least
one representative for each of the considered compound classes, i.e.
alcohols, polyols, phenols, monocarboxylic acids, hydroxylic acids,
multicarboxylic acids, imidazoles, ethers, ketones, amino acids,
amines, nitroso compounds, alkenes and steroids (Table S1). To
account for additional metabolite (sub)classes, not included in our
analytical standard database, an untargeted approach was imple-
mented as well during method optimization and validation,
thereby providing adequate metabolome coverage. To effectuate
the chemometric optimization of the sample extraction protocols,
different variables with a possible effect on extraction yield were
evaluated by means of fractional factorial designs (FFD, D-optimal
quadratic design), followed by response surface modelling (RSM) to
further optimize the statistically significant quantitative variables.

2.5. Finalized extraction protocols

Feces. To extract the polar fecal metabolome [22], 200 mg of
lyophilized homogenized feces was dissolved in 4 mL of ultrapure
water, after the addition of 100 L ISTD mixture (25 ng pL~" of p-
valine-dg and r-alanine-ds). Subsequent to 30s of thorough vor-
texing, 1 mL of an ice-cold methanol and ultrapure water (80:20, v/
v) mixture was added. The supernatant of the solid-liquid extrac-
tion was collected after 1 min of vortexing and 10 min of rotation,
followed by a 10-min centrifugation step (13300 x g, at 4 °C). Next,
the extract was passed over a polyamide filter (diameter of 25 mm
and pore size of 0.45um) (Machery-Nagel, Diiren, Germany),
diluted (1:3) with ultrapure water and transferred to a glass HPLC-
vial.

Blood plasma. Generic extraction of the polar blood plasma
metabolites was initiated by pipetting 150 pL plasma into a 1.5-mL
Eppendorf tube, after which 250 pL methanol and 8 pL ISTD solu-
tion (25ngulL! p-valine-d8 and i-alanine-d3) was added.

Subsequently, the sample was vortexed for 2 min, followed by
protein precipitation for 30 min at 4 °C, and collection of the su-
pernatant after centrifugation (15 min, 4 °C, and 15000 x g). Next,
the supernatant was evaporated to a droplet of about 20 pL, using a
Gyrovap centrifugal evaporator (Howe, Banbury, UK) (35°C, vac-
uum conditions). The residue was diluted in 180 pL ultrapure water,
vortexed for 30s, and eventually transferred to a glass HPLC-vial
with insert.

Urine. Extraction of the urinary metabolome was initiated by
pipetting 300 pL urine into a 1.5-mL Eppendorf tube, after which
30 pL of ISTD mixture (100 ng uL~! p-valine-d8 and of 1-alanine-d3)
was added. Following this, the sample was centrifuged for 8 min (1
000 x g, 4°C). Next, 100 pL supernatant was collected and diluted
(1:10) with ultrapure water, after which the resulting extract was
transferred to a glass HPLC-vial.

2.6. Validation

As specific guidelines for the validation of untargeted metab-
olomic methods are lacking at the time, the validation procedure
was based on previously published research and was pursued in a
targeted as well as an untargeted fashion [22,27,31,32]. Perfor-
mance parameters included linearity, precision, and recovery,
which were assessed based on the absolute area of the compounds
detected through metabolic fingerprinting and/or the selected
endogenous metabolites. In doing so, it was important to incor-
porate multiple metabolite classes, relevant for the specific matrix
and the associated metabolic processes. As such, the analytical
performance for the polar metabolome was evaluated based on 23
identified metabolites for feces (Table S3), 32 for blood plasma
(Table S4) and 45 for urine (Table S5).

Linearity. QC extracts were diluted serially (1, 2, 5,10, 20, 50, 100,
200 and 500 times) with ultrapure water and assessment of line-
arity was based on the obtained coefficients of determination (R?).
For the untargeted assessment of linearity, only components
recovered in all samples from the dilution series were included
[32].

Precision. Precision comprised instrumental, intra- and inter-day
assay precision, which were all evaluated based on the calculated
coefficients of variance (CV). Instrumental precision was deter-
mined by repeatedly injecting (n = 10) a QC sample. For the intra-
assay precision, multiple QC samples (n=10) were extracted in
parallel under identical experimental conditions, whereas inter-
day assay precision (n=20) included within-laboratory variation
such as different analysts, days, etc [33].

Recovery. Assessment of recovery was performed in a targeted
manner only, in accordance with the protocol of Vanden Bussche,
Marzorati, Laukens and Vanhaecke [22] and following the Food and
Drugs Administrations (FDA) guidelines [34]. More specifically, a
comparison was made between the concentrations that were
retrieved for samples that were spiked either after or before
extraction, thereby considering three different concentration levels
in triplicate. The protocol for spiking after extraction concerned the
addition of 20, 30, and 50 uL of an analytical standard mixture
(5ngpL~!) to 50pL of a QC sample extract and subsequently
standardized with ultrapure water to reach a volume of 100 pL. The
protocol for spiking before extraction was attuned to obtain theo-
retically identical standard concentrations in the final extract as
when spiking after extraction.

3. Results and discussion
3.1. Metabolomic fingerprinting method

Development of the analytical detection method was initially
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performed on an Exactive™ HRMS system (Thermo Fisher Scien-
tific, San José, CA, USA) [22], with the incorporation of 110 known
gastro-intestinal relevant metabolites [6,35—38], ranging widely in
physico-chemical characteristics. This analytical standard mixture
was also used to adapt the method towards a Q-Exactive™
instrumental setting, applying a resolution of 140 000 FWHM at
1 Hz. Later on, metabolites considered to be relevant for plasma and
urine were added to this standard mixture [39]. This resulted in a
final list of 291 compounds (Table S1), which were likely to be
present in at least one of the investigated matrices. HRMS param-
eters were optimized based on peak intensity and signal-to-noise
ratio.

3.2. Chemometric sample extraction optimization

The significance of different extraction parameters on the
detection capability was evaluated through a sequential strategy of
experimental designs and based on both the absolute peak areas of
metabolites with high endogenous abundance, specific for each
matrix (Table S1), as well as the number of components discovered
after Sieve™ processing.

Feces. Fecal samples underwent 48 h of lyophilization to
warrant the elimination of microbial activity and facilitate ho-
mogenization. Moreover, research of Aggio, Mayor, Coyle, Reade,
Khalid, Ratcliffe and Probert [40] showed that the recovery of
volatile compounds could be significantly improved by lyophili-
zation, due to a change in volume of the liquid and the gas phase.
During the FFD, various factors displayed significant effects (p-
value < 0.05) on the extraction efficiency, including the mass of
the fecal material, the extraction solvent (ultrapure water) and
extraction volume. In the subsequent RSM design, further opti-
mization was performed to determine the best combination of
fecal mass (200 mg) and extraction volume (1 mL). The incor-
poration of a dilution factor (1:3) was able to circumvent matrix
effects that may hinder detection of e.g. multicarboxylic acids in
the FFD [22].

Blood plasma. Preliminary work was conducted to determine
the best blood-based matrix (plasma or serum, heparin versus
EDTA coated tubes) to perform untargeted metabolomics, with
blood plasma providing superior results in terms of metabolome
coverage. This was confirmed by Barri and Dragsted [41] and
Ishikawa, Maekawa, Saito, Senoo, Urata, Murayama, Tajima,
Kumagai and Saito [42], who stated that plasma is the best matrix
for optimal metabolite coverage. Heparin is considered to be the
best anticoagulants for both polar metabolomics as well as lip-
idomic analysis [41,43], which was also concluded in this study.
An FFD was performed to reveal significant effects (p-
value < 0.05) of the amount of starting material, the extraction
solvent (methanol), extraction volume, and purification technique
(30 min protein precipitation, followed by centrifugation, both at
4°C). Next, several vortexing steps were evaluated and the effect
of evaporation was assessed by comparing evaporation to com-
plete dryness to evaporation to a remaining 20 pL extract aliquot,
with the latter providing the best results [44—47]. Optimization of
significant quantitative factors was performed by means of an
RSM design (Tables S6 and S7). A high volume of extraction

Table 1

solvent (250 pL methanol) and starting material (150 pL plasma),
combined with a 2-min vortexing step appeared to render the
highest extraction yield. A dilution of 1:10 was implemented to
avoid HRMS detector saturation.

Urine. Urine samples are prone to diurnal variation, caused by
differences in hydration level, fasting and exercise [48]. Morning
urine is considered to be more concentrated and to provide the
most holistic view on the metabolome [49,50]. Therefore, fasted
morning urine was chosen to optimize and validate the extraction
protocol. The D-optimal design showed a significant effect (p-
value < 0.05) of extraction solvent (ultrapure water), dilution (4:1)
of the urine sample and a negative association between centrifu-
gation time and speed, suggesting a negative influence of both a
very long centrifugation time (15 min) as well as a high centrifu-
gation speed (4 000 x g) (Tables S8 and S9). Additionally, an RSM
model was created to determine the optimal combination between
centrifugation time (8 min) and speed (1 000 x g) (Table S8). The
optimal dilution for the extracted sample was evaluated based on a
serial dilution of QC samples, with a large number of targeted
metabolites displaying a linear range between 1/500 and 1/10
dilution (29 out of 45), and saturation of the HRMS instrument
above 1/10. This phenomenon could also be observed in the
untargeted data, rendering 1/10 the optimal dilution for the urinary
samples.

3.3. Validation of the analytical methods

If the method is able to fulfill the performance criteria set out for
targeted approaches, such as linearity, precision and recovery for
the selected known metabolites (endogenously present in the QC
sample), it can be presumed that the untargeted analytical method
is ‘fit-for-its-purpose’ [4]. The endogenously present metabolites
were identified based on their accurate mass, C-isotope profile and
retention time relative to that of the internal standard. Next to the
targeted validation, an additional untargeted validation was
considered to ensure holistic metabolome coverage [27]. The FDA
recommends a nominal coefficient of variance (CV) of 15% as
acceptable for a single bioanalytical test and a CV of 20% when
operating close to the limit of detection [34]. For the validation of a
metabolic fingerprinting method, a CV below 30% is considered
acceptable, based on the fact that ions with a higher CV are not
eligible as candidate biomarkers [31]. The percentage of compo-
nents displaying a CV-value below 30% for both the instrumental,
inter-day and intra-assay precision, as well as the linearity is pre-
sented in Table 1. A total of 15 532, 3 006 and 8 090 were discovered
for feces, plasma and urine, respectively.

Fecal samples. After serial dilution of the QC samples, an excel-
lent linearity (R*>>0.99) was obtained for 20 of the 23 selected
endogenous compounds. Good recoveries were obtained for all
compounds, varying between 84.1 + 28.3% and 108.0 + 16.0% with
an average CV of 9.4%. The instrumental precision had CVs from 3.4
to 14.8%. Evaluation of the repeatability and inter-day precision
(n=20) led to CVs ranging from 2.6 to 12.4% and 6.1-13.1%,
respectively (Table S3). Results of the metabolic fingerprinting
method are presented in Table 1, with 42.9% of the detected com-
ponents having an R? above 0.90. Respectively 90.0, 89.4 and 84.7%

The analytical performance criteria (precision and linearity), expressed in percentages, of the fingerprinting method for urine, plasma and feces, in which a total of 15 532, 3006

and 8090 components were discovered, respectively.

Instrumental precision (%) (CV<30%)

Intra-assay precision (%) (CV<30%)

Inter-day precision (%) (CV<30%) Linearity (%) (R? > 0.90)

Feces 90.0 89.4
Plasma 95.3 93.9
Urine 98.9 98.9

84.7 42.9
87.8 41.5
98.0 85.7
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of the components showed a CV below 30% for instrumental pre-
cision, repeatability (intra-assay precision) and reproducibility
(inter-day precision).

Plasma samples. Excellent linearities were achieved for 29 of the
32 selected metabolites (R? > 0.99). Good recoveries were obtained,
ranging between 70.6 + 23.0% and 125.6 + 13.3%, with an average
CV of 9.7%. Instrumental precision was situated between 3.2 and
17.1%, with an average precision of 8.6%. With the exception of six
compounds, CVs for inter-day precision varied between 4.4 and
14.5% and those for the intra-assay precision between 3.6 and 19.3%
(Table S4). The results of the validation on the fingerprinting data
are presented in Table 1, with respectively 98.9%, 98.9% and 98.0% of
the components showing a CV below 30% for instrumental preci-
sion, repeatability and reproducibility. 85.2% of the detected com-
ponents displayed an R? above 0.90.

Urine samples. For 39 out of 45 selected target metabolites, a
good linear trend was observed (R? > 0.99). Excellent recoveries
were obtained for all metabolites, ranging between 90.8 + 6.8% and
105.9 + 7.2%, with an average CV of 7.1%. An excellent instrumental
precision was observed (<15%) for all but three metabolites. The
CVs for the intra-assay and inter-day repeatability varied from 2.4
to 20.1% and 3.5—17.6%, respectively. Five metabolites had a CV >
20%, these phenomena appeared to be metabolite class related
(ethers, ketones) (Table S5). A large CV for intra-assay precision in
specific classes could be explained by a difference in extraction
efficiency [51]. This indicates that an extraction method cannot be
optimal for all endogenously present metabolites originating from
different physico-chemical classes. Results of the untargeted vali-
dation are presented in Table 1, with respectively 95.3%, 93.9% and
87.8% of the components showing a CV < 30% for instrumental
precision, repeatability and reproducibility. 41.5% of the detected
components displayed an R? > 0.90.

In comparison to other protocols that have been developed and
validated for the concerned biological matrices [52—55], similar
performance for the various method characteristics was achieved
with our multi-matrix method. However, it should be noted that
the cited protocols were specifically validated for only a limited
number of targeted metabolites. As with our methodology excel-
lent performance characteristics were obtained for a broad range of
metabolite classes, assessed in both a targeted and untargeted
fashion, a promising platform for multi-matrix fingerprinting was
concluded.
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3.4. Applicability of multi-matrix fingerprinting in biomarker
studies

The validated multi-matrix metabolomics strategy was
employed to register the metabolic state of 10 healthy volunteers,
which allowed to define the assets of analyzing multiple biological
matrices in a connective manner. Acquired full-scan data were
assessed by untargeted fingerprinting and/or targeted profiling.
With respect to the latter, the in-house constructed database of 291
polar metabolites was consulted, thereby having a positive hit in
case that the m/z-value (allowed mass deviation < 3 ppm), relative
retention time (allowed deviation <2.5%), and isotope pattern
(B¢/12C ratio compliant with CD 2002/657/EC requirements)
matched that of the analytical standard.

Metabolome coverage by matrices. Within a clinical context,
metabolomics has the primary intention to increase our knowledge
on the metabolic mechanisms that are involved in health and dis-
ease, often making the link with exposomal or genetic influential
factors. In this regard, a high coverage of the system's metabolome
by the method(s) applied is of critical importance as this evidently
aids in understanding the complex interactive biological pathways
and discovery of fit-for-purpose biomarkers. This study demon-
strated that the metabolomic fingerprint of feces is the most
comprehensive across all biological matrices in terms of number of
recovered components (likely to be metabolite features). Consid-
ering the matrix-specific QC samples, the metabolomic fingerprint
of feces comprised 9 672 components (of which 68.4% were ob-
tained in positive ionization mode), whereas urine recorded 9 647
components (60.9% in positive ionization mode) and plasma 6 122
components (67.3% in positive ionization mode) (Fig. 1).

Coverage complementarity of matrices. The complementarity of
the different matrices was assessed through a Venn diagram
(Fig. 2), covering 14 060 unique components. Hereby, 2 992, 2 520
and 1 111 components were noted to be uniquely present in the
fecal, urinary, or plasma fingerprint, respectively. A total of 3 944
metabolite features was detected in all three matrices, and can
therefore be considered the most informative and eligible as po-
tential biomarkers, as they may reflect matrix-overlapping or
complementary (patho)physiological pathways. Moreover, these
metabolite features are of particular interest for metabolic and
physiological flux analysis at a system's level. The major part of the
plasma metabolome was also present in fecal (69.5%) and urinary
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Fig. 1. PCA-X score plot based on the fecal, urinary, and plasma fingerprints of 10 healthy volunteers with clear clustering according to matrix.
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Fig. 2. Venn diagram to indicate the complementarity in terms of metabolome
coverage across the different biological matrices. In total, 14 060 unique metabolites
were discovered in the human metabolome.

samples (76.8%). As such, these matrices are considered equally
informative as compared to plasma.

Single versus multi-matrix fingerprinting to differentiate according
to metabolic state. A typical step within the metabolomics workflow
concerns the multivariate data analysis, which intends to reveal
significant differences between the metabolomic fingerprints from
the study cohorts under investigation. As mentioned before, up to
date, this was predominantly attempted on the basis of a single
biological matrix. In this work, as no specific disease conditions or
age differences were present among the participants, it was opted
to determine the metabolic discrepancies between males and fe-
males. The extent to which this was possible, was compared for the
single versus multi-matrix fingerprinting strategy. Data for multi-
variate statistical analysis were pareto-scaled (using the square root
of the standard deviation as scaling factor) and log-transformed to
standardize the range of signal intensities and induce normality,
respectively. For each matrix type, a PCA-X model was constructed
using the combined data from the positive and negative ionization
mode. The associated score plots suggested good instrumental
precision as good clustering of subsequent QC samples was
observed (Figure S1 — S3). In addition, clustering according to
gender was noted for the fecal and plasma samples, which indi-
cated that the dominant fraction of variance in the associated
metabolomes could be assigned to gender or gender-related factors
(Figure S1 — S3). Based on this exploratory modelling step, urine
samples turn out to be less promising in unfolding metabolic dis-
crepancies that are function of gender. The subsequent OPLS-DA
modelling strategy confirmed these findings, suggesting that

Table 2
Validation parameters of the OPLS-DA model for the single matrices in discrimi-
nating between genders.

R%(X) R(Y) QA(Y) p-value
Feces 0.45 0.99 0.83 0.035
Plasma 0.60 0.97 0.84 0.030

Urine 0.52 0.92 0.71 0.120

plasma and feces are equally suited to assess gender-dependent
metabolic differences, being reflected by an excellent Q%(Y) (>
0.8), acceptable CV-ANOVA p-value (< 0.035), and good permuta-
tion testing (Table 2). To our knowledge, this is the first study to
demonstrate gender discriminating abilities of fecal samples, which
appear to be equally informative as plasma in this particular
context [50,56,57]. Even though only a minority of the microbiome
is characterized by gender-related differences [58], feces displayed
excellent discriminative abilities. Therefore, it is considered an even
more informative biofluid compared to plasma for microbiome
associated conditions. Until now, there is still no accepted approach
for sample size determination for metabolic phenotyping, as the
statistical power not only relates to sample size, but also to effect
size and significance level, which cannot be anticipated [59].
Indeed, despite the limited number of participants included,
excellent validation parameters (R%(X), R*(Y), Q*Y) and CV-
ANOVA) for feces and plasma were achieved, while for urine, the
high p-value pointed towards insignificant OPLS-DA models, which
could be improved by increasing the number of participants
[50,56,57,60]. Only for R*(X) different values were observed, which
could be merely contributed to the higher number of detected
components in fecal samples over plasma (respectively 9 672 and 6
122).

Subsequently, the discriminating performance was also
assessed by combining the fingerprint data from the various
matrices, exploiting the value of multi-matrix fingerprinting. The
established OPLS-DA models were able to discriminate according to
gender, being endorsed by the performance of the various valida-
tion parameters (Table 3) and good permutation testing. This with
the exception of the model that was based on the urinary and fecal
fingerprints, whereby the obtained CV-ANOVA p-value suggested
borderline-significance (Fig. S4). These data indicate that the
combination of invasive and non-invasive sampling offers an
excellent alternative for the single-matrix studies. This is endorsed
by the fact that it can provide a multitude of information regarding
the current and passed metabolic (patho)physiologic state of the
individual.

Based on all of the above-cited OPLS-DA models, components
with differentiating potential were defined. To this end, the VIP-
score (> 2), Jack-knifed confidence interval (not across zero) and
the S-plot descriptors (|covariance| and |correlation|) were taken
into consideration as selection parameters. For the Pearson's cor-
relation coefficient, a value of 0.6021 was adopted as cutoff, with a
significance level of 0.05 [61,62]. For the |covariance|, it was opted
to implement an adjusted threshold for each model, i.e. only those
metabolites with an absolute covariance belonging to the highest
quarter of the S-plot were retained, due to the varying number of X-
variables (metabolites) and its associated impact on the covariance
profile. As such, in a single-matrix context, 24 discriminative me-
tabolites could be retrieved for feces and 19 for plasma. When
considering the validated two-matrix models, 49 metabolites were
retained for urine/plasma and 41 for feces/plasma. Eventually, the
model that was based on the metabolic fingerprints of all three
matrices resulted in the discovery of 69 discriminating metabolites,

Table 3

Validation parameters for the OPLS-DA models that were constructed based on the
fingerprints of multiple biological matrices and aiming for discrimination according
to gender.

R%(X) R%(Y) Q%(Y) p-value
3 matrices 0.41 0.98 0.83 0.036
Urine - Feces 0.38 0.99 0.80 0.056
Urine - Plasma 043 0.98 0.84 0.031
Feces - Plasma 0.47 0.99 0.83 0.035
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with 20 originating from urine, 28 from feces, and 21 from plasma
(Fig. S5). These metabolites are considered most descriptive as they
were retrieved across the various biofluids. The applicability of
feces as a study matrix was highlighted by the high number of
discriminating metabolites in both the single-matrix as well as the
multi-matrix methodology. The developed multi-matrix platform
proved to be very promising as it combines information from
different matrices, thereby increasing the number of recovered
metabolites, having the potential to reveal more significant results
compared to single-matrix studies, including the discovery of bio-
markers and unraveling mechanistic information. Moreover, per-
forming a multi-matrix pilot study can aid tremendously in
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determining the optimal experimental setup, including optimal
biofluid selection and sample size determination.

Multi-matrix targeted profiling to differentiate according to
metabolic state. A targeted profiling strategy was utilized to eval-
uate the discrimination of study groups, using our in house data-
base comprising 291 known metabolites, more particularly
focusing on the 73 metabolites that were detected in all three
matrices. The intensity profiles of these metabolites across the
various matrices is visualized in a heat map (Fig. 3), thereby
applying signal correction based on the sample's average intensity
of the internal standard p-valine-dg. Hierarchical cluster analysis
(one minus Pearson correlation, MetaboAnalyst 3.0) enabled to
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discriminate between matrices, with fecal samples displaying in
general the highest metabolite signal intensities. However, a per-
fect discrimination between the study groups could not be ob-
tained, due to the limited power of the targeted metabolites
(n=291) in comparison to untargeted screening. This points to the
superiority of holistic untargeted polar metabolomic fingerprinting
for classifying according to metabolic state.

Next, the ability of each known metabolite to discriminate be-
tween genders was statistically evaluated by means of a Wilcoxon
two-sample test. Although only 19 metabolites contributed signif-
icantly (p-value < 0.05) to the male vs. female participant discrim-
ination, a majority of the targeted metabolites displayed a
difference of at least 30% between genders (Tables S9—S11), as such
providing useful information on trends related to gender differ-
entiation. Multiple papers have reported differences in concentra-
tion levels of individual metabolites or metabolite classes in urine
and plasma [56,60,63—68]. For feces, however, no gender differ-
entiating studies have been reported yet. As can be seen from
Table S10, amino acids and amines were more concentrated in feces
from male participants, which can be explained by a generally
higher protein uptake by men [63] and an altered metabolisation of
the ingested proteins due to differences in gastrointestinal micro-
biome [58] or cell metabolism between men and women. The latter
is endorsed by the strong dependency of specific disease charac-
teristics and their treatment efficacy according to gender [64]. For
plasma, a variety of studies reported higher concentrations of
amino acids in males, including 1-valine, 1-leucine, L-isoleucine, L-
glutamine, L-proline, L-tyrosine, whereas for glycine and L-serine
higher concentrations have been observed in females
[56,60,63—65]. These observations were confirmed in this study
(Table S11). Indeed, free fatty acids (FFAs) (monocarboxylic acids)
and glucose were more abundant in plasma samples from females,
which is in line with observations of Soeters, Sauerwein, Groener,
Aerts, Ackermans, Glatz, Fliers and Serlie [66] (Table S11), demon-
strating higher plasma FFA concentrations upon short-term fasting,
leading to higher glucose levels in females. Finally, in parallel with
observations of Saito, Maekawa, Pappan, Urata, Ishikawa, Kumagai
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and Saito [67], bile acids were more concentrated in male samples.
With respect to urinary metabolomics, only a few studies have
assessed gender differences. However, higher concentrations for
ketoglutaric acid, p-fructose and urinary nucleosides have been
reported in women [60,68], which was confirmed in this study as
well (Table S12). The advantage of using a multi-matrix platform
relates to the possibility of identifying complementary physiolog-
ical pathways. To demonstrate this, pathway analysis (Metab-
oAnalyst 3.0) was performed for the targeted metabolites that were
detected in all three matrices. This revealed noticeable differences
(i.e. minimum 30% difference) in the beta-alanine pathway be-
tween male and female participants (Fig. 4), in line with Budczies,
Brockmoller, Muller, Barupal, Richter-Ehrenstein, Kleine-Tebbe,
Griffin, Oresic, Dietel, Denkert and Fiehn [69], who reported es-
trogen mediated alterations in the beta-alanine pathway. In male
fecal samples, higher concentrations of metabolites associated with
the beta-alanine pathway (i.e. gamma-aminobutyric acid, sper-
mine, and spermidine) were observed. The elevated levels of these
metabolites can be ascribed to the higher nutrient intake by men
[63,70], or altered gastrointestinal metabolisation due to differ-
ences in microbiome or cell metabolism [58,64], with a higher
production or less efficient absorption of spermine and spermidine
(Table S10). Based on our multi-matrix approach, we can deduce
that the differences in absorption rate between females and males
is the main reason as the latter metabolites were retrieved in higher
concentration levels in female plasma except for gamma-amino-
buryic acid, for which no difference could be observed [71]. This
may relate to the fact that spermine and spermidine are involved in
the menstrual cycle and implicated in numerous cellular functions,
including the synthesis of nuleic acids (Table S11) [72], which was
also reflected in the higher observed concentrations of pantothenic
acid, uracil and other nucleic acids (Table S12) in the urine of
women. Urinary L-carnosine, on the other hand, was observed in
higher concentrations in the male participants. As L-carnosine is a
dipeptide specific for mammalian skeletal muscle, it has been
suggested to be higher in men as a result of their higher muscle
metabolism [60,73,74].
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Fig. 4. The beta-alanine pathway show noticeable changes between male and female participants. Increase in male samples are indicated by blue arrows and increases in female
samples are indicated in red (SCFA = Short Chain Fatty Acids). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)
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4. Conclusions

This study presents a unique multi-matrix metabolomics
fingerprinting strategy for feces, blood plasma and urine, thereby
using a single analytical platform, i.e. reversed phase UHPLC-
quadrupole-Orbitrap HRMS. It may be noted that the typical
exchangeable hardware parts (i.e. ionization source, analytical
column, and solvents) were identical for all matrices, which allows
a continuous analysis of samples along the different matrix types.
This may greatly contribute towards an efficient gathering of full-
scan data that is matrix-transcending and easy to integrate. As
such, a multi-matrix approach perfectly fits in the concept of sys-
tems biology and may enclose significant value to elucidate intri-
cate metabolic pathways. In this regard, acceptable performance
criteria were obtained for the three metabolic fingerprinting
methods, taking into account the fact that compound specific
optimization is not feasible. These findings indicate that the
analytical methods were fit-for-purpose and suitable to achieve
high metabolome coverage, along diverse chemical classes. Indeed,
evaluation of the metabolic fingerprints of feces, blood plasma, and
urine revealed hundreds of metabolites with representatives for
almost all of the considered classes. Using an intensity threshold of
500 000, the fecal metabolome had the highest coverage (9 672
metabolite features), followed by urine (9 647 metabolite features)
and plasma (6 122 metabolite features). As such, due to its
discriminative abilities, non-invasive nature of sample collection,
and excellent coverage, feces proved itself as an excellent alterna-
tive to plasma, which is typically most frequently targeted in clin-
ical omics studies. The differences in coverage in relation to the
matrix type highlight the merits of performing a multi-matrix
platform for disease related biomarker detection or potential
pathway elucidation. Especially when performing a pilot study,
implementing a multi-matrix platform will aid tremendously in
determining the optimal experimental setup, including sample size
and optimal biofluid.
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