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ABSTRACT: Liquid chromatography−mass spectrometry
(LC−MS) methods are most often used for untargeted
metabolomics and lipidomics. However, methods have not
been standardized as accepted “best practice” documents, and
reports lack harmonization with respect to quantitative data
that enable interstudy comparisons. Researchers use a wide
variety of high-resolution mass spectrometers under different
operating conditions, and it is unclear if results would yield different biological conclusions depending on the instrument
performance. To this end, we used 126 identical human plasma samples and 29 quality control samples from a nutritional
intervention study. We investigated lipidomic data acquisitions across nine different MS instruments (1 single TOF, 1 Q/orbital
ion trap, and 7 QTOF instruments). Sample preparations, chromatography conditions, and data processing methods were kept
identical. Single-point internal standard calibrations were used to estimate absolute concentrations for 307 unique lipids
identified by accurate mass, MS/MS spectral match, and retention times. Quantitative results were highly comparable between
the LC−MS platforms tested. Using partial least-squares discriminant analysis (PLS-DA) to compare results between platforms, a
92% overlap for the most discriminating lipids based on variable importance in projection (VIP) scores was achieved for all lipids
that were detected by at least two instrument platforms. Importantly, even the relative positions of individual samples on the
PLS-DA projections were identical. The key for success in harmonizing results was to avoid ion saturation by carefully evaluating
linear dynamic ranges using serial dilutions and adjusting the resuspension volume and/or injection volume before running actual
study samples.

Liquid chromatography−mass spectrometry (LC−MS) is the
preferred technique in metabolomics and lipidomics.1−4

Advantages are reliable identification of metabolites, even at trace
levels, separation of isomers and isobars, and reduced ion-
suppression effects compared to direct infusion−MS-based
methods.5 Current LC instruments permit effective compound
separations with a throughput of more than 300 samples per
week and instrument. Despite this rapid progress in LC−MS
platform performances, a key limitation is the current lack of
methodological standardization in metabolomics and lipidomics,
and harmonization of reporting results for interstudy compar-
isons in databases such as the Metabolomics Workbench.6 Few
studies have focused on the comparison of multi-instrument or
interlaboratory reproducibility of LC−MS-based metabolomics
or lipidomics data, usually with a limited number of samples.7−15

These workflows targeted specific analytes and relied on internal
or external standards for quantification, while untargeted
workflows compared results from different platforms after
statistical analysis using either raw or normalized peak intensities.
However, such untargeted peak reports are not easy to compare
between laboratories and studies, making validation of biological
findings more difficult. Results from untargeted metabolomics
and lipidomics analysis are known to be dependent on sampling

and extraction methods in addition to details of chromatographic
parameters. Estimating absolute chemical concentrations of
particular lipid species is an important step to enable direct
comparisons of results between studies. Reporting absolute lipid
quantities immediately distinguishes major from minor lipid
species, allowing biological interpretations of the results in the
context of other analytes.16 However, use of reference standards
for each target lipid species is not feasible due to their
unavailability or prohibitive price, so compromise is needed for
quantification of lipids in biological samples.17

Best practice protocols for LC−MS-based untargeted
lipidomics include using a series of multiple internal standards
(one or more per lipid class), spiked into all the samples at
different stages of the sample processing (e.g., extraction, dry
extract resuspension).4 These internal standards can be used to
estimate lipid quantifications for each lipid class as one-point
peak intensity ratios, multiplied by the concentration of the
internal standard. If needed for validation studies, these one-
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point calibration measures can be extended to isotope-dilution
calibration curves.17

As a caveat, one-point calibrations are estimates, not fully
validated concentrations. For instance, instrument responses for
saturated and unsaturated phospholipid species decrease with
increasing acyl-chain length, affecting accurate concentration
estimations.18 Second, peak intensities vary markedly, even
within each lipid class, depending on the solvent mixtures at the
point of electrospray ionization. For this reason, one-point
lipidomic quantifications will yield different results between
reversed-phase liquid chromatography (RPLC) and hydrophilic
interaction chromatography or normal-phase liquid chromatog-
raphy (NPLC) methods that separate lipids mainly according to
classes of polar head groups.5,17

While harmonizing lipidomic reports is under way with respect
to naming and annotating lipids,19,20 it is unclear if results yield
different biological conclusions depending on the high-
resolution mass spectrometer used in LC−MS-based untargeted
lipidomics. Despite strides made to standardize untargeted
lipidomics, the type of mass spectrometer used across
laboratories can never be fully standardized. To this end, we
tested nine different instruments from four mass spectrometry
manufacturers, using identical samples, sample preparations,
chromatography, and data processing methods. We employed a
quadrupole/orbital ion trap, a time-of-flight (TOF) and 7
different quadrupole/TOF mass spectrometers, operating at
mass resolving power from 10000 to 62000 full width at half-
maximum (fwhm), mass accuracy better than 1−5 ppm, and a
linear dynamic range of 3−4 orders of magnitude. Our results are
the first to provide a thorough investigation of this issue on a
large-scale multi-instrument study.

■ EXPERIMENTAL SECTION
Chemicals. LC−MS-grade solvents and mobile phase

modifiers were obtained from Fisher Scientific, Waltham, MA
(water, acetonitrile, and methanol) and Sigma−Aldrich/Fluka,
St. Louis, MO (isopropanol, formic acid, ammonium formate,
methyl tert-butyl ether, and toluene).
Lipid standards [lysophosphatidylethanolamine (LPE) 17:1,

lysophosphatidylcholine (LPC) 17:0, phosphatidylcholine (PC)
12:0/13:0, phosphatidylethanolamine (PE) 17:0/17:0, phos-
phatidylglycerol (PG) 17:0/17:0, d7-cholesterol, sphingomyelin
(SM) d18:1/17:0, ceramide (Cer) d18:1/17:0, sphingosine
(d17:1), monoacylglycerol (MG) 17:0/0:0/0:0, diacylglycerols
(DG) 12:0/12:0/0:0 and 18:1/2:0/0:0, and d5-triacylglycerol
(TG) 17:0/17:1/17:0] were obtained from Avanti Polar Lipids
(Alabaster, AL) with the exceptions of 12-[[(cyclohexylamino)-
carbonyl]amino]-dodecanoic acid (CUDA) (Cayman Chemical,
Ann Arbor, MI) and cholesteryl ester (CE) 22:1 (Nu-Chek Prep,
Elysian, MN).
These internal standards were selected based on previous

analysis of nonspiked plasma lipid extracts and monitoring their
signal (MS1 and MS/MS) at the time of their elution. We used
this approach to avoid their coelution with lipid species with the
same total number of carbons and saturation but differing in fatty
acyl constituents.
Human Plasma Samples. For this study, we used a subset of

samples from our recent study focused on nutritional
phenotyping in response to a test meal containing gamma-
linolenic acid.21 Briefly, in a single blind, placebo-controlled,
crossover design, seven healthy subjects consumed a test meal
that consisted of GLA fat (borage oil) or a control fat (a mixture
of corn, safflower, sunflower, and extra-virgin light olive oils).

Compared to the original study, where all subjects were fed on
three separate test days for each test meal, a small modification
was needed due to sample limitation. Thus, for this study, six
subjects were fed on three separate test days for each test meal,
while one subject was fed on two separate test days for a control
fat meal and four test days for GLA fat (the fourth set was not
used in the original study). Plasma samples collected at 0, 2, and 4
h in response to the test meals were used for analysis. In total, 126
samples were analyzed out of which 42 were baseline samples
(time 0 h), 40 were control fat samples (time 2 and 4 h), and 44
were GLA fat samples (time 2 and 4 h).
For quality control, a pool sample consisted of a mixture of

nonfasting blood plasma (both control and GLA fat) was used.
Also, standard reference material SRM 1950 Metabolites in
Frozen Human Plasma (NIST, Gaithersburg, MD) was used.

Sample Preparation. Extraction of plasma lipids was carried
out using a biphasic solvent system of cold methanol, methyl tert-
butyl ether (MTBE), and water22 with some modifications. In
more detail, 300 μL of coldmethanol containing a mixture of odd
chain and deuterated lipid internal standards [LPE(17:1),
LPC(17:0), PC(12:0/13:0), PE(17:0/17:0), PG(17:0/17:0),
d7-cholesterol, SM(d18:1/17:0), Cer(d18:1/17:0), sphingosine
(d17:1), DG(12:0/12:0/0:0), DG(18:1/2:0/0:0), and d5-TG-
(17:0/17:1/17:0)] was added to a 40 μL blood plasma aliquot in
a 2 mL Eppendorf tube and then vortexed (10 s). Then, 1000 μL
of cold MTBE containing CE 22:1 (internal standard) was
added, followed by vortexing (10 s) and shaking (6 min) at 4 °C.
Phase separation was induced by adding 250 μL of LC−MS-
grade water followed by centrifugation at 14000 rpm for 2 min.
The concentration of each internal standard can be found in
Table S1. Ten aliquots (each 100 μL) of the upper organic phase
were collected and evaporated. The volumes of plasma samples
and extraction solvents were used to ensure an aliquot for each
platform and one backup. For a single platform, the method can
be scaled as shown in refs 21 and 23. Dried lipid extracts were
resuspended using a methanol/toluene (9:1, v/v) mixture
containing an internal standard CUDA (150 ng/mL), vortexed
for (10 s), and centrifuged at 14000 rpm for 2 min prior to LC−
MS analysis. The resuspension volume was instrument-depend-
ent (Table S2).

LC−MS Analysis. The LC−MS systems used are listed in
Table S2. Each LC system consisted of a pump, a column oven,
and an autosampler. Lipids were separated on an Acquity UPLC
CSH C18 column (100 × 2.1 mm; 1.7 μm) coupled to an
Acquity UPLC CSH C18 VanGuard precolumn (5 × 2.1 mm;
1.7 μm) (Waters, Milford, MA). The column was maintained at
65 °C at a flow-rate of 0.6 mL/min. The mobile phases consisted
of (A) 60:40 (v/v) acetonitrile:water with ammonium formate
(10 mM) and formic acid (0.1%) and (B) 90:10 (v/v)
isopropanol:acetonitrile with ammonium formate (10 mM)
and formic acid (0.1%). The separation was conducted under the
following gradient: 0min 15% (B); 0−2min 30% (B); 2−2.5min
48% (B); 2.5−11 min 82% (B); 11−11.5 min 99% (B); 11.5−12
min 99% (B); 12−12.1 min 15% (B); and 12.1−15 min 15% (B).
The injected volume was instrument-dependent (Table S2).
Sample temperature was maintained at 4 °C. Detailed
instrumental parameters for each MS system are described in
the Supporting Information.

Quality Control. Quality control was assured by (i)
randomization of the sequence, (ii) injection of 10 pool samples
to equilibrate the LC−MS system before actual sequence of
samples; (iii) injection of pool samples at the beginning and the
end of the sequence and between each 10 actual samples, (iv)
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injection of NIST SRM 1950 at the beginning of the sequence
and after injection of 100 actual samples; (v) procedure blank
analysis, (vi) replicate analysis of 10 blood plasma samples
(covering both the extraction and LC−MS analysis), (vii)
checking the peak shape and the intensity of spiked internal
standards and the internal standard added prior to injection, and
(viii) monitoring mass accuracy of internal standards during the
run.
Data Processing. Raw data files were converted to ABF

format using Reifycs Abf (Analysis Base File) Converter
(accessible at: http://www.reifycs.com/AbfConverter/). In
case of the X500R instrument, the wiff2 files were centroided
and exported to mzml format using ProteoWizard (v. 3.0.10827)
(accessible at http://proteowizard.sourceforge.net/) followed
by converting files to ABF format. Raw data files from LECO
Citius were exported to mzml format using ChromaTOF-HRT
(v 1.74) followed by converting files to ABF format.
For data processing, MS-DIAL (v. 2.52) software program was

used.24 The following parameters were used: retention time
begin, 0.3 min; retention time end, 12.6 min; mass range begin,
280 Da; mass range end, 1500 Da; MS1 (centroiding) tolerance,
0.01 Da; smoothing level, 3 scans; minimum peak height, 500
amplitude (QTOFs), 300 amplitude (TOF), 100000 amplitude
(Q Exactive HF), 1 amplitude (X500R); mass slice width, 0.05
Da; retention time tolerance for retention time−m/z (tR−m/z)
library, 0.15 min; accurate mass tolerance, 0.03 Da; retention
time tolerance for alignment, 0.1 min; MS1 tolerance for
alignment, 0.025 Da.
For lipid identification, accurate mass and MS/MS matching

was used with the public LipidBlast library of over 200000 MS/
MS spectra.24,25 In total, 676 tR−m/z pairs were annotated
covering 11 lipid classes and various molecular species: AC, CE,
cholesterol, Cer (Cer, HexCer, Hex2Cer), DG, LPC, LPE, PC
(PC, pPC/oPC), PE (PE, pPE/oPE), SM, and TG. Quantifica-
tion was performed by combining data for different detected
molecular species for each particular lipid (e.g., sum of [M +
NH4]

+, [M + Na]+, [M + K]+ adducts for each TG species)
followed by normalization using (i) class-specific internal
standards and reported “estimated” concentrations (μM) or
(ii) sum of all annotated lipids (total ion chromatogram, TIC).
Internal standards used for concentration calculation are listed in
Tables S1 and S3. For DG species, DG 12:0/12:0/0:0 was used
for quantification because of its elution proximity (tR ∼ 4.3 min)

with all DG species (tR = 5.2−8.2 min) compared to DG 18:1/
2:0/0:0 (tR ∼ 3.2 min). Sphingosine, MG, and PG species were
not detected using current protocol. All internal standards,
including DG(18:1/2:0/0:0), MG(17:0/0:0/0:0), PG(17:0/
17:0), sphingosine d17:1, and CUDA were used for retention
time correction for the tR−m/z lipid library.

Statistical Analysis and Data Visualization. Multivariate
analysis was performed using partial least-squares discriminant
analysis (PLS-DA) using MetaboAnalyst.26 Statistical models
were created for both concentration and TIC normalized data
after logarithmic transformation (base 10) and Pareto scaling.
Exported variable importance in projection (VIP) scores were
used for evaluation. For locally weighted scatterplot smoothing
(LOESS), MetaBox software was used.27 For metabolic network
mapping annotated lipids were imported into the web-based
PubChem chemical structural clustering tool (accessible at:
https://pubchem.ncbi.nlm.nih.gov) to generate a pairwise
chemical similarity matrix. Thematrix and PubChemCompound
Identifier (CID) pairs for lipids were used as input in MetaBox
software for generation of the Cytoscape network file. A
threshold of 0.7 Tanimoto score was used to define the similarity
cutoff for lipid structures. The final network graph was imported
into Cytoscape 2.8.3 (accessible at: http://www.cytoscape.org).
Results from statistics generated in MetaboAnalyst were
converted into the Cytoscape node attribute file and imported
into Cytoscape. The graph was visualized using a yED organic
layout algorithm in Cytoscape.

■ RESULTS AND DISCUSSION

Study Design. A wide range of factors impact the number
and nature of detected lipids in untargeted LC−MS-based
lipidomics studies. Sample extraction protocols, chromato-
graphic separations, mobile phase compositions and modifiers,
ionization modes, mass spectrometry sensitivity, and linear
dynamic range, data processing software, and data normalization
prior to statistical analysis are considered as key factors.3,4 In this
study, we investigated the impact different mass spectrometers
might have on the outcome and biological interpretation of a
typical plasma lipidomic study. In order to isolate this one
potential key factor, we ensured that all other factors remained
identical, namely samples, sample preparations, chromatography,
and data processing methods.

Table 1. Overview of Performance of LC−MS Platforms Evaluated

platform
number MS platform

unique lipids
annotated

lipids with RSD ≤ 30% (QC
samples, n = 15)a

median RSD for QC
samples (n = 15)a

median RSD for technical
replicates (n = 10)a

lipids with VIP ≥ 1 for 2-
class PLS-DA modelb

1 Agilent 6530 (a) 299 279 4.5% 7.3% 42
2 Agilent 6530 (b) 288 271 6.4% 7.1% 39
3 Agilent 6550

iFunnel
287 248 5.5% 5.5% 41

4 Agilent 6560 Ion
Mobility

280 264 7.0% 9.9% 42

5 Thermo Q
Exactive HF

307 293 6.3% 6.2% 43

6 LECO Citius 209 153 19% 10% 33
7 SCIEX

TripleTOF
5600+

297 265 9.2% 9.3% 43

8 SCIEX
TripleTOF
6600

306 293 4.1% 5.8% 42

9 SCIEX X500R 302 273 7.1% 7.2% 41
aBased on raw data with merged adduct species. bBased on concentration data using class-specific internal standard normalization.
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We deliberately used samples from a recently published study
in order to investigate if statistical and biological conclusions
would differ from the published results,21 depending on the
instrumentation used. In a blinded, placebo-controlled, crossover
designed study, seven healthy subjects consumed a test meal
containing high amounts of gamma-linolenic acid (GLA, 18:3n6)
compared to a control meal. Each subject underwent the
nutritional test on three separate test days for each test meal, and
samples were taken each time over an 8 h period. As a result, this
study demonstrated that five of seven subjects had enzymatic
capacities to elongate GLA (18:3n6) into dihomo-gamma-
linolenic acid (DGLA, 20:3n6), while two subjects did not show
such conversions.21

All samples were extracted as in the published study before,
using methyl tert-butyl ether (MTBE)/methanol21 that has clear
advantages over classic chloroform/methanol-based extraction
protocols. Because of the low density of the lipid-containing
organic phase that forms the upper layer during phase separation,
its collection is greatly simplified, and all main lipid classes in
plasma are extracted with high recovery.22 Furthermore, MTBE
is nontoxic and noncarcinogenic compared to chloroform. All
samples were analyzed using identical chromatographic separa-
tion. Specifically, we used reversed-phase ultrahigh-performance
liquid chromatography−mass spectrometry (UHPLC−MS)
which is the most widely used method, accounting for about
70% of all reported LC−MS lipidomic studies.4 We employed a
short microbore column (100 × 2.1 mm id) with 1.7 μm particle
size with C18 as lipophilic sorbent, representing the currently
preferred method in LC−MS-based lipidomics.4 Specifically, we
used an Acquity UPLC charged surface hybrid (CSH) C18
column, incorporating a low level surface charge leading to
improved peak symmetry. We also used frequently employed LC

elution mobile phases, acetonitrile:water (60:40 v/v) and
isopropanol:acetonitrile (90:10 v/v). We used a buffer of 10
mM ammonium formate with 0.1% formic acid in ESI(+) that
provided the best overall scores over four other commonly used
mobile-phase modifier systems.28 In order to ensure that
potential differences in data processing software would not
obfuscate statistical or biological results, we used the open source
software MS-DIAL24 for all acquired mass spectrometry data. In
addition, we made sure to have a sufficiently high number of
samples to enable robust conclusions, using a sequence
consisting of total 155 injections per mass spectrometer,
including 126 actual study samples, 15 quality control “pool”
samples, 2 blanks, 10 technical plasma replicates, and 2 NIST
SRM 1950 plasma samples, thus, simulating a large-scale
lipidomics study.
In order to focus the comparison of instruments to the most

relevant data acquisition, we limited data acquisitions to positive
mode electrospray (ESI) because ESI(+) provided more
annotated lipids than ESI(−) and also showed the most number
of altered lipids in the published gamma-linolenic dietary study.21

We evaluated nine modern, high-resolution mass spectrometers,
comprising 1 single TOF, 1 Q/orbital ion trap, and 7 QTOF
instruments (Table 1) operating at a mass resolving power
between 10000 and 62000 fwhm.

Initial Evaluation of LC−MS Systems. By nominal
performance parameters, each mass spectrometer was expected
to be different in sensitivity and linear dynamic range. We
performed an initial evaluation of each instrument to avoid
saturating the ion source and the detector even for highly
abundant, coeluting lipids. To this end, we prepared a pool
sample from nonfasting blood plasma extracts and determined
optimal dilution and injection volumes for each instrument using
the most abundant lipid species, PC(34:2) ([M + H]+, m/z
758.5670) and TG(52:4) ([M + NH4]

+, m/z 872.7650). At the
same time, we checked how dilution of the pool sample
influenced the detection of lower abundant lipids such as
LPC(18:1) ([M + H]+, m/z 522.3554) and TG(54:8) ([M
+NH4]

+, m/z 892.7389). Resuspension and injection volumes
were considered optimal for linear correlations R2 > 0.98 for both
high abundant and low abundant lipids. Simulating samples with
lipid concentrations beyond the optimal dilution, we found that
2-fold increase in lipid concentration slightly worsened R2

(0.95−0.97) for high abundant lipid species on some instru-
ments. For low abundant lipid species, R2 > 0.97 was observed
within the optimal working range for all instruments. Overall,
instruments had a linear dynamic range from 3 to 4 orders of
magnitude. Investigating the linearity of response for multiple
analytes represents a crucial factor for the validity of LC−MS-
based untargeted workflows, especially, when peak intensities are
used to estimate lipid concentrations.
Despite using identical chromatographic methods on all nine

LC−MS platforms, slight differences in separation were
observed, likely due to different lengths and internal diameters
of the tubing used in each LC unit. Figures S1 and S2 show
examples of separation of two PC(36:3) isomers and three
TG(54:6) isomers, respectively, in blood plasma extracts.
Insufficient separation of isomers also poses challenges to data
processing, specifically during peak picking, recognizing peak
apexes and valleys, and aligning peak across all chromatograms.
Overall, however, chromatography results were sufficiently
similar between the nine LC−MS platforms that bias in reporting
peak heights was largely avoided.

Figure 1. Three-class PLS-DA score plots based on annotated lipids in
response to dietary challenges. Prior to statistical analysis, class-specific
internal standards were used for normalization followed by calculating
estimated concentrations (μM).
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Statistical Comparison of Nine LC−MS Systems in a
Large-Scale Lipidomics Study. For each of the nine LC−MS
platforms, a series of 155 injections was conducted including
actual samples, QC samples, technical replicates, blank samples,
and NIST SRM 1950 plasma samples. After data processing in
MS-DIAL, we noted changes in adduct ratios, mainly for di- and
triacylglycerols (DG, TG), between the instruments and
depending on lipid concentrations. Figure S3 shows box plots
for the adduct ratios [M + Na]+/[M+NH4]

+ and [M+K]+/[M
+NH4]

+ for highly abundant TG(54:4), medium abundant
TG(54:2), and low abundant TG(54:1) triacylglycerols in blood
plasma samples. Alkali adduct ion ratios increased with
decreasing lipid concentrations to the point that for some
triacylglycerols, [M + Na]+ and [M+K]+ were observed as the
dominating species compared to [M + NH4]

+ adducts. On this
account, we merged all three types of adducts for each lipid
species to reduce data complexity prior to statistical analysis and
also to improve the signal intensity for low abundant species.

Subsequently, raw data were converted to estimated absolute
lipid concentrations by a single-point calibration using one
internal standard for each lipid class (Tables S1 and S3).
Reporting molar concentrations is the preferred way to

harmonize lipidomic reports across studies.16 It would be difficult
to validate using internal standards to estimate concentrations for
structurally unidentified lipid signals. Furthermore, biological
conclusions are best based on identified compounds, not on
unknown tR−m/z signals. Therefore, we evaluated the statistical
performance of the nine LC−MS platforms based on annotated
lipids and their reported concentrations. We also used an
alternative data normalization approach, using the sum of the
peak intensities (TIC) of all annotated lipids for each sample,
representing data as fraction intensity of the total observed
lipidome. In overall, between 209 and 307 unique lipid species
(not including internal standards) were annotated on all LC−MS
platforms (Table 1). Using the quality control samples, between
153 and 293 lipids showed acceptable reproducibility defined as

Figure 2. Two-class PLS-DA score plots based on annotated lipids in response to dietary challenges. Prior to statistical analysis, class-specific internal
standards were used for normalization followed by calculating “estimated” concentrations (μM). Detailed individual scores are shown for subjects 2 and
5 as an example indicating that individual lipid profiles were highly consistent between the LC−MS platforms.
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relative standard deviations RSD ≤ 30%, with median RSD
ranging from 4.1−19%. Technical replicates showed median
RSD ranging from 5.5−10% for all platforms.
Partial least-squares discriminant analysis (PLS-DA) was

conducted to find differences between plasma lipidomes at
baseline and after nutritional intervention with a test meal high in
gamma-linolenic acid fat in comparison to the control fat test
meal. Figure 1 shows PLS-DA score plots for the three-class
model based on annotated lipids in response to dietary
challenges using concentration-based data for all LC−MS
platforms evaluated. Strikingly, highly similar patterns were
observed for all LC−MS platforms. The score plot indicates that

“baseline” (0 h) and control fat groups (2 and 4 h) are more
closely related than “baseline” and GLA fat groups, which can be
explained by their similar fatty acid composition originating from
dietary sources rich in oleic acid (18:1). On the other hand, the
separation of GLA fat group reflects the differences in plasma
lipid profiles in response to the gamma-linolenic acid rich test
meal (18:3). Almost identical patterns were also observed for
TIC normalized data (Figure S4), showing that indeed TIC
normalizations are a valid representation of data.
Next, we tested if all nine LC−MS instruments correctly

described the extent and the biochemical profile differences
between the seven subjects induced by dietary challenges. To this

Figure 3. Metabolic network analysis of the postprandial lipid response to dietary challenges based on two-class PLS-DA model using estimated
concentrations. The network connects lipid nodes if lipids share high chemical similarity using the PubChem substructure fingerprint Tanimoto scores.
Nodes represent lipids which occurred at least once with VIP≥ 1 over all instruments evaluated. Node sizes scale with average magnitude of VIP values
over all instruments. Green nodes represent lipids with VIP ≥ 1, white nodes represent lipids with VIP < 1, gray nodes are used for lipids that were not
annotated/detected in particular LC−MS system. Position of each instrument within the node is based on a pie chart.

Figure 4. Estimated concentrations by single-point calibrations across nine instruments. For TG(54:9) and TG(48:6), very similar concentration values
are obtained for all mass spectrometers, showing a large increase in concentration in response to high gamma-linoleic acid.
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end, we focused on the separation of postprandial samples
collected from subjects in response to the control and GF test
meals. Using a two-class PLS-DA model, lipid profiles showed
clear separation of control fat and GLA fat groups (Figures S5
and S6). Importantly, each subject and their postprandial
lipidomic response curve could be recognized based on the
position on PLS-DA score plots which indicates that individual
lipid profiles were highly consistent between the LC−MS
platforms (Figure 2).
The use of variable importance of the projection (VIP) of PLS-

DA allowed us to identify lipids that most contributed to the
separation of plasma samples based on test meals. In order to
visualize which lipids were identified as important (VIP ≥ 1), we
created a metabolic network that provided a clear picture of each
LC−MS platform (Figure 3). There has been a 75% overlap for
the 54most discriminating lipids based on VIP scores higher than
1, independent of the mass spectrometer used. This result
showed that the correct biochemical signature was recognized by
any mass spectrometer used. All instruments discovered that TG
and DG containing 18:3 fatty acid chains were more
concentrated in plasma in response to GF test meal. A few
lipids were reported with VIP ≥ 1 only on a single platform.
When these lipids were not considered, an overall 92% overlap
for the 43 discriminating lipids was achieved in the multivariate
statistical analysis. For TIC normalized data, a 76% overlap for
the 56 most discriminating lipids based on VIP≥ 1 was observed,
with an increase to an overlap of 87% of 48 discriminating lipids
that were reported at VIP ≥ 1 for at least two instruments. When
comparing TIC normalized to internal-standards normalized

data, 96% identical lipids were found for the most discriminating
lipids at VIP ≥ 1. Thus, when correct adjustments are made for
instrumentation, biological studies can be effectively replicated
across different high-resolution MS platforms based on PLS-DA
statistical analysis.
Last, we focused on how reported lipid concentrations were

consistent among all platforms. Figure 4 shows examples for two
most discriminating lipid species, TG(54:9) and TG(48:6).
These two triglycerides became highly enriched after gamma-
linolenic rich test meals. Estimated concentrations calculated by
single-point calibrations provided comparable results between all
instruments, with averages ranging from 0.8−1.6 μM for
TG(48:6) and 0.9−3.1 μM for TG(54:9). Further investigation
showed that reported concentrations can be influenced by the
signal intensity of particular lipids as shown in Figure S7. While
for low- and medium-abundant TG(54:1) and TG(54:2),
respectively, comparable results were obtained between all nine
LC−MS instruments, the highly abundant TG(54:4) showed
less consistent results between the mass spectrometry platforms.
This effect is likely due to nonlinearity of calibrations at high peak
intensities that cannot be correctly calculated by single-point
calibrations.
In principle, harmonizing metabolomic or lipidomic reports

can also be achieved by reporting all peaks in relation to a
community quality control, for example, the NIST SRM 1950
human plasma pool. Since identical quality control and NIST
SRM 1950 plasma samples were injected on each instrument, we
attempted to use these control samples for further improving the
normalization of absolute concentration estimates. In Figure S8,

Figure 5. (a) Three-class PLS-DA score plots based on concentrations of annotated lipids in response to dietary challenges acquired on the same LC−
MS platform over a 1 year time period (set 1 vs set 2). (b) Estimated concentrations by single-point calibrations between data sets acquired on the same
MS system over a 1 year period (set 1 vs set 2). Examples are given for the most discriminating lipid species among different lipid classes LPC(18:3),
DG(36:6, 18:3_18:3), and TG(54:9, 18:3_18:3_18:3) showing reproducible quantitative data over a long time period.
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we show the highly abundant TG(54:4) as an example for the
effects of different normalization schemes. First, we used locally
weighted scatterplot smoothing (LOESS) normalization27 using
the quality control samples that were injected after each set of 10
actual cohort samples. Subsequently, we tested using the NIST
SRM 1950 plasma samples injected at the beginning and after
100 actual cohort samples. For NIST SRM 1950 plasma samples,
we defined a single normalization factor for each lipid per LC−
MSplatform.We used an average (n = 2) of this reference sample
run on each platform and calculated the fold change for each lipid
relative to the reference sample value for a reference laboratory.
Thus, the normalized concentration cij for a lipid i, for a platform j
was given by

=

c

c
i

i j

normalized

mean value (lipid ) in ref material from ref lab
mean value (lipid ) in ref material from instrument

ij

ij

where i is measured lipid and j is the LC−MS platform. For the
reference material, we used reference values from ref 29.
Although using QC and NIST SRM 1950 samples for

normalization further corrected for instrumental platform effects,
insufficient lipid coverage of reference values for NIST SRM
1950 did not permit full utilization of this approach for all lipid
species found in biological samples. For instance, reference
values were reported for only 18 TG species as isobaric molecular
subsets,29 while our LC−MS lipidomics method permitted
annotation of 101 isobaric molecular species (113 lipid species
including isomer differentiation). Also, NIST SRM 1950
represents a pooled human plasma obtained from healthy
individuals after overnight fasting. Thus, some lipid species
occurring due to the nutritional intervention were missing in this
reference material.
Reproducibility of Quantitative Data in LC−MS Large-

Scale Lipidomics Study. For the TripleTOF 6600 LC−MS
platform, we performed a between-series reproducibility test.
Ninety samples (for five out of seven subjects) were analyzed
again, one year after the original data acquisition. We observed a
97% overlap of annotations of detected lipids between these two
data sets. Further, supervised multivariate PLS-DA score plots
showed nearly identical quantitative patterns (Figure 5a), and in
addition, single-point calibrations also yielded highly similar
quantitative data for detected lipids in univariate analyses (Figure
5b). Overall, these data demonstrate very good reproducibility of
plasma lipidomics using this protocol.

■ CONCLUSIONS

Untargeted LC−MS-based lipidomics analysis can yield nearly
identical results even when different mass spectrometers are
used. As shown by detailed PLS-DA investigations, individual
biochemical profiles of subjects after postprandial meal responses
are accurately determined independently which type of high-
resolution mass spectrometer was used. More importantly, the
same top-hit discriminating lipid species were found by all
instruments. Estimated concentrations calculated using single-
point calibrations provided highly comparable results between
LC−MS platforms tested, paving the way toward robust and
repeatable reporting of untargeted lipidomic results within and
across human plasma studies. Key to harmonization of results is
to avoid saturation of both the instrument’s ion source and the
detector by carefully evaluating linear dynamic ranges using serial

dilutions and adjusting the resuspension volume and/or
injection volume before running actual study samples.
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