#METABOLOMICS WORKBENCH pavaoa_20230105_133948 DATATRACK_ID:3683 STUDY_ID:ST002433 ANALYSIS_ID:AN003963
VERSION                          	1
CREATED_ON                       	02-08-2024
#PROJECT
PR:PROJECT_TITLE                 	Elucidating dynamic anaerobe metabolism with HRMAS 13C NMR and genome-scale
PR:PROJECT_TITLE                 	modeling
PR:PROJECT_SUMMARY               	Anaerobic microbial metabolism drives critical functions within global
PR:PROJECT_SUMMARY               	ecosystems, host-microbiota interactions, and industrial applications, yet
PR:PROJECT_SUMMARY               	remains ill-defined. Here we advance a versatile approach to elaborate cellular
PR:PROJECT_SUMMARY               	metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an
PR:PROJECT_SUMMARY               	amino acid and carbohydrate-fermenting Clostridia. High-Resolution Magic Angle
PR:PROJECT_SUMMARY               	Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy of C. difficile,
PR:PROJECT_SUMMARY               	grown with fermentable 13C substrates, informed dynamic flux balance analysis
PR:PROJECT_SUMMARY               	(dFBA) of the pathogen’s genome-scale metabolism. Analyses identified dynamic
PR:PROJECT_SUMMARY               	recruitment of oxidative and supporting reductive pathways, with integration of
PR:PROJECT_SUMMARY               	high-flux amino acid and glycolytic metabolism at alanine’s biosynthesis to
PR:PROJECT_SUMMARY               	support efficient energy generation, nitrogen handling, and biomass generation.
PR:PROJECT_SUMMARY               	Model predictions informed an approach leveraging the sensitivity of 13C NMR
PR:PROJECT_SUMMARY               	spectroscopy to simultaneously track cellular carbon and nitrogen flow from
PR:PROJECT_SUMMARY               	[U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine.
PR:PROJECT_SUMMARY               	Findings identify metabolic strategies used by C. difficile to support its rapid
PR:PROJECT_SUMMARY               	colonization and expansion in gut ecosystems.
PR:INSTITUTE                     	Brigham and Women's Hospital
PR:DEPARTMENT                    	Pathology
PR:LABORATORY                    	Bry Lab (Massachusetts Host-Microbiome Center, BWH) and Cheng Lab (Massachusetts
PR:LABORATORY                    	General Hospital)
PR:LAST_NAME                     	Pavao
PR:FIRST_NAME                    	Aidan
PR:ADDRESS                       	221 Longwood Ave, EBRC-411, Boston, MA, 02115, USA
PR:EMAIL                         	apavao2@bwh.harvard.edu
PR:PHONE                         	617-525-7184
PR:FUNDING_SOURCE                	NIH R01AI153653, R03AI174158, P30DK056338, S10OD023406, R21CA243255, and
PR:FUNDING_SOURCE                	R01AG070257; BWH Precision Medicine Institute; MGH A. A. Martinos Center for
PR:FUNDING_SOURCE                	Biomedical Imaging
PR:PUBLICATIONS                  	https://doi.org/10.1038/s41589-023-01275-9
PR:DOI                           	http://dx.doi.org/10.21228/M88M5G
PR:CONTRIBUTORS                  	Aidan Pavao, Brintha Girinathan, Johann Peltier, Pamela Altamirano Silva, Bruno
PR:CONTRIBUTORS                  	Dupuy, Isabella H. Muti, Craig Malloy, Leo L. Cheng, Lynn Bry
#STUDY
ST:STUDY_TITLE                   	Elucidating dynamic anaerobe metabolism with HRMAS 13C NMR and genome-scale
ST:STUDY_TITLE                   	modeling
ST:STUDY_SUMMARY                 	Anaerobic microbial metabolism drives critical functions within global
ST:STUDY_SUMMARY                 	ecosystems, host-microbiota interactions, and industrial applications, yet
ST:STUDY_SUMMARY                 	remains ill-defined. Here we advance a versatile approach to elaborate cellular
ST:STUDY_SUMMARY                 	metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an
ST:STUDY_SUMMARY                 	amino acid and carbohydrate-fermenting Clostridia. High-Resolution Magic Angle
ST:STUDY_SUMMARY                 	Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy of C. difficile,
ST:STUDY_SUMMARY                 	grown with fermentable 13C substrates, informed dynamic flux balance analysis
ST:STUDY_SUMMARY                 	(dFBA) of the pathogen’s genome-scale metabolism. Analyses identified dynamic
ST:STUDY_SUMMARY                 	recruitment of oxidative and supporting reductive pathways, with integration of
ST:STUDY_SUMMARY                 	high-flux amino acid and glycolytic metabolism at alanine’s biosynthesis to
ST:STUDY_SUMMARY                 	support efficient energy generation, nitrogen handling, and biomass generation.
ST:STUDY_SUMMARY                 	Model predictions informed an approach leveraging the sensitivity of 13C NMR
ST:STUDY_SUMMARY                 	spectroscopy to simultaneously track cellular carbon and nitrogen flow from
ST:STUDY_SUMMARY                 	[U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine.
ST:STUDY_SUMMARY                 	Findings identify metabolic strategies used by C. difficile to support its rapid
ST:STUDY_SUMMARY                 	colonization and expansion in gut ecosystems.
ST:INSTITUTE                     	Brigham and Women's Hospital
ST:DEPARTMENT                    	Pathology
ST:LABORATORY                    	Bry Lab, Massachusetts Host-Microbiome Center; Cheng Lab, Massachusetts General
ST:LABORATORY                    	Hospital
ST:LAST_NAME                     	Pavao
ST:FIRST_NAME                    	Aidan
ST:ADDRESS                       	221 Longwood Ave, EBRC-411, Boston, MA, 02115, USA
ST:EMAIL                         	apavao2@bwh.harvard.edu
ST:PHONE                         	617-525-7184
ST:SUBMIT_DATE                   	2023-01-05
#SUBJECT
SU:SUBJECT_TYPE                  	Bacteria
SU:SUBJECT_SPECIES               	Clostridioides difficile
SU:TAXONOMY_ID                   	NCBI:txid1496
SU:GENOTYPE_STRAIN               	ATCC 43255 delPaLoc
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Additional sample data
SUBJECT_SAMPLE_FACTORS           	-	Data10_13CGlc_endpt1	Condition:13C-Glucose	RAW_FILE_NAME=Data10_13CGlc_endpt1; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data11_13CGlc_endpt2	Condition:13C-Glucose	RAW_FILE_NAME=Data11_13CGlc_endpt2; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data12_13CGlc_endpt3	Condition:13C-Glucose	RAW_FILE_NAME=Data12_13CGlc_endpt3; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data7_13CGlc1	Condition:13C-Glucose	RAW_FILE_NAME=Data7_13CGlc1; Type=Time series; Analysis=dFBA, Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data8_13CGlc2	Condition:13C-Glucose	RAW_FILE_NAME=Data8_13CGlc2; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data9_13CGlc3	Condition:13C-Glucose	RAW_FILE_NAME=Data9_13CGlc3; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data19_13CGlc_standards	Condition:13C-Glucose, 13C-Acetate, 13C-Alanine, 13C-Ethanol, 13C-Butyrate	RAW_FILE_NAME=Data19_13CGlc_standards; Type=Chemical solutions; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data13_13CGlc_15NLeu_endpt1	Condition:13C-Glucose, 15N-Leucine	RAW_FILE_NAME=Data13_13CGlc_15NLeu_endpt1; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data14_13CGlc_15NLeu_endpt2	Condition:13C-Glucose, 15N-Leucine	RAW_FILE_NAME=Data14_13CGlc_15NLeu_endpt2; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data15_13CGlc_15NLeu_endpt3	Condition:13C-Glucose, 15N-Leucine	RAW_FILE_NAME=Data15_13CGlc_15NLeu_endpt3; Type=Culture supernatant; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data16_13CGlc_15NLeu_stack	Condition:13C-Glucose, 15N-Leucine	RAW_FILE_NAME=Data16_13CGlc_15NLeu_stack; Type=Time series; Analysis=Alanine 14N:15N
SUBJECT_SAMPLE_FACTORS           	-	Data4_13CLeu1	Condition:13C-Leucine	RAW_FILE_NAME=Data4_13CLeu1; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data5_13CLeu2	Condition:13C-Leucine	RAW_FILE_NAME=Data5_13CLeu2; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data6_13CLeu3	Condition:13C-Leucine	RAW_FILE_NAME=Data6_13CLeu3; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data1_13CPro1	Condition:13C-Proline	RAW_FILE_NAME=Data1_13CPro1; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data2_13CPro2	Condition:13C-Proline	RAW_FILE_NAME=Data2_13CPro2; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data3_13CPro3	Condition:13C-Proline	RAW_FILE_NAME=Data3_13CPro3; Type=Time series; Analysis=dFBA
SUBJECT_SAMPLE_FACTORS           	-	Data20_2D	Condition:13C-Proline, 13C-Leucine, 13C-Glucose	RAW_FILE_NAME=Data20_2D; Type=2D time series snapshots; Analysis=Metabolite identification
SUBJECT_SAMPLE_FACTORS           	-	Data18_13CPro-Se	Condition:13C-Proline, no Selenium source	RAW_FILE_NAME=Data18_13CPro-Se; Type=Time series; Analysis=Selenium perturbation
SUBJECT_SAMPLE_FACTORS           	-	Data17_13CPro+Se	Condition:13C-Proline, Sodium Selenite	RAW_FILE_NAME=Data17_13CPro+Se; Type=Time series; Analysis=Selenium perturbation
#COLLECTION
CO:COLLECTION_SUMMARY            	For live cell time series, labeled MMM with 10% D2O was inoculated with 100,000
CO:COLLECTION_SUMMARY            	vegetative Clostridioides difficile ATCC43255 delPaLoc cells in a Kel-F HRMAS
CO:COLLECTION_SUMMARY            	rotor insert under anaerobic atmosphere. The sample was spun at 3600 Hz at 37°C
CO:COLLECTION_SUMMARY            	in a 4mm zirconia rotor and successive spectra were acquired over 36+ hours. For
CO:COLLECTION_SUMMARY            	static culture supernatants, labeled MMM was inoculated with 100,000 vegetative
CO:COLLECTION_SUMMARY            	Clostridioides difficile ATCC43255 delPaLoc cells in an anaerobic chamber and
CO:COLLECTION_SUMMARY            	incubated at 37°C for 48 hours. Cultures were centrifuged and supernatants
CO:COLLECTION_SUMMARY            	collected and lyophilized, then resuspended in D2O prior to NMR spectra
CO:COLLECTION_SUMMARY            	acquisition.
CO:SAMPLE_TYPE                   	Bacterial cells
CO:VOLUMEORAMOUNT_COLLECTED      	30 µL
CO:COLLECTION_VIALS              	Kel-F inserts for 4mm MAS rotor
CO:COLLECTION_TUBE_TEMP          	37°C
#TREATMENT
TR:TREATMENT_SUMMARY             	For live cell time series, cells were grown in MMM with 10% D2O and one or more
TR:TREATMENT_SUMMARY             	labeled substrates (L-[U-13C]Proline, L-[U-13C]Leucine, [U-13C]Glucose, or both
TR:TREATMENT_SUMMARY             	[U-13C]Glucose and L-[15N]Leucine). For culture supernatants, cells were grown
TR:TREATMENT_SUMMARY             	in MMM with [U-13C]Glucose, with or without L-[15N]Leucine. For the selenium
TR:TREATMENT_SUMMARY             	perturbation time series, cells were grown in MMM with 10% L-[U-13C]Proline,
TR:TREATMENT_SUMMARY             	with or without 100µM sodium selenite.
TR:TREATMENT_COMPOUND            	L-[U-13C]Proline, L-[U-13C]Leucine, [U-13C]Glucose, L-[15N]Leucine, sodium
TR:TREATMENT_COMPOUND            	selenite
TR:CELL_MEDIA                    	C. difficile Modified Minimal Medium (MMM) with 100µM sodium selenite and 10%
TR:CELL_MEDIA                    	D2O
TR:CELL_ENVIR_COND               	anaerobic, 37°C
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	For live cell NMR time series, samples were added to the HRMAS rotor neat. For
SP:SAMPLEPREP_SUMMARY            	culture supernatants, lyophilized samples were resuspended in D2O added to the
SP:SAMPLEPREP_SUMMARY            	NMR rotor neat.
#CHROMATOGRAPHY
#ANALYSIS
AN:LABORATORY_NAME               	Cheng Lab
AN:ANALYSIS_TYPE                 	NMR
AN:ACQUISITION_PARAMETERS_FILE   	acqus
AN:SOFTWARE_VERSION              	TopSpin 3.6.2
AN:OPERATOR_NAME                 	Leo L Cheng
AN:PROCESSING_PARAMETERS_FILE    	pdata/1/procs
AN:DATA_FORMAT                   	Bruker
#NMR
NM:INSTRUMENT_NAME               	Bruker Avance III HD
NM:INSTRUMENT_TYPE               	FT-NMR
NM:NMR_EXPERIMENT_TYPE           	Other
NM:NMR_COMMENTS                  	Experiments collected 1D 1H, 1D 13C, 2D 1H, 2D 13C, and 2D 1H-13C data.
NM:SPECTROMETER_FREQUENCY        	600 MHz
NM:NMR_SOLVENT                   	C. difficile Modified Minimal Medium (MMM) with 100µM sodium selenite and 10%
NM:NMR_SOLVENT                   	D2O
NM:TEMPERATURE                   	37
#NMR_METABOLITE_DATA
NMR_METABOLITE_DATA:UNITS        	proportion of Alanine
NMR_METABOLITE_DATA_START
Samples	Data10_13CGlc_endpt1	Data11_13CGlc_endpt2	Data12_13CGlc_endpt3	Data13_13CGlc_15NLeu_endpt1	Data14_13CGlc_15NLeu_endpt2	Data15_13CGlc_15NLeu_endpt3
Factors	Condition:13C-Glucose	Condition:13C-Glucose	Condition:13C-Glucose	Condition:13C-Glucose, 15N-Leucine	Condition:13C-Glucose, 15N-Leucine	Condition:13C-Glucose, 15N-Leucine	
[2_3-13C_ 14N]Alanine	0.4700	0.5300	0.5300	0.1700	0.2200	0.2400
[2_3-13C_ 15N]Alanine				0.2800	0.2600	0.2600
[U-13C_ 14N]Alanine	0.5300	0.4700	0.4700	0.1900	0.2400	0.2300
[U-13C_ 15N]Alanine				0.3600	0.2700	0.2700
NMR_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name	pubchem_id	inchi_key	kegg_id	other_id	other_id_type	ri	ri_type	moverz_quant	
[2,3-13C, 14N]Alanine									
[2,3-13C, 15N]Alanine									
[U-13C, 14N]Alanine									
[U-13C, 15N]Alanine									
METABOLITES_END
#END