#METABOLOMICS WORKBENCH jad2033_20221116_083951 DATATRACK_ID:3577 STUDY_ID:ST002353 ANALYSIS_ID:AN004099 PROJECT_ID:PR001509
VERSION             	1
CREATED_ON             	November 17, 2022, 11:36 am
#PROJECT
PR:PROJECT_TITLE                 	Biomolecular condensates create phospholipid-enriched microenvironments
PR:PROJECT_TYPE                  	Metabolomics of in vitro condensates
PR:PROJECT_SUMMARY               	Proteins and RNA are able to phase separate from the aqueous cellular
PR:PROJECT_SUMMARY               	environment to form sub-cellular compartments called condensates. This process
PR:PROJECT_SUMMARY               	results in a protein-RNA mixture that is chemically distinct from the
PR:PROJECT_SUMMARY               	surrounding aqueous phase. Here we use mass spectrometry to characterize the
PR:PROJECT_SUMMARY               	metabolomes of condensates. To test this, we prepared mixtures of
PR:PROJECT_SUMMARY               	phase-separated proteins and cellular metabolites and identified metabolites
PR:PROJECT_SUMMARY               	enriched in the condensate phase. These proteins included SARS-CoV-2
PR:PROJECT_SUMMARY               	nucleocapsid, as well as low complexity domains of MED1 and HNRNPA1.
PR:INSTITUTE                     	Cornell University
PR:DEPARTMENT                    	Department of Pharmacology
PR:LABORATORY                    	Dr. Samie Jaffrey
PR:LAST_NAME                     	Dumelie
PR:FIRST_NAME                    	Jason
PR:ADDRESS                       	1300 York Ave, LC-524, New York City, NY
PR:EMAIL                         	jdumes98@gmail.com
PR:PHONE                         	6465690174
PR:FUNDING_SOURCE                	This work was supported by the National Institutes of Health grants R35NS111631
PR:FUNDING_SOURCE                	and R01CA186702 (S.R.J.); R01AR076029, R21ES032347 and R21NS118633 (Q.C.); and
PR:FUNDING_SOURCE                	NIH P01 HD067244 and support from the Starr Cancer Consortium I13-0037 (S.S.G.).
PR:PUBLICATIONS                  	Under revision
PR:CONTRIBUTORS                  	Jason G. Dumelie, Qiuying Chen, Dawson Miller, Nabeel Attarwala, Steven S. Gross
PR:CONTRIBUTORS                  	and Samie R. Jaffrey1
#STUDY
ST:STUDY_TITLE                   	Biomolecular condensates create phospholipid-enriched microenvironments (Part 3)
ST:STUDY_SUMMARY                 	Proteins and RNA are able to phase separate from the aqueous cellular
ST:STUDY_SUMMARY                 	environment to form sub-cellular compartments called condensates. This process
ST:STUDY_SUMMARY                 	results in a protein-RNA mixture that is chemically distinct from the
ST:STUDY_SUMMARY                 	surrounding aqueous phase. Here we use mass spectrometry to characterize the
ST:STUDY_SUMMARY                 	metabolomes of condensates. To test this, we prepared mixtures of
ST:STUDY_SUMMARY                 	phase-separated proteins and cellular metabolites and identified metabolites
ST:STUDY_SUMMARY                 	enriched in the condensate phase. These proteins included SARS-CoV-2
ST:STUDY_SUMMARY                 	nucleocapsid, as well as low complexity domains of MED1 and HNRNPA1.
ST:INSTITUTE                     	Cornell University
ST:DEPARTMENT                    	Department of Pharmacology
ST:LABORATORY                    	Dr. Samie Jaffrey
ST:LAST_NAME                     	Dumelie
ST:FIRST_NAME                    	Jason
ST:ADDRESS                       	1300 York Ave, LC-524, New York City, NY
ST:EMAIL                         	jdumes98@gmail.com
ST:STUDY_TYPE                    	Metabolomes of in vitro synthesized condensates
ST:PHONE                         	6465690174
#SUBJECT
SU:SUBJECT_TYPE                  	Synthetic sample
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Aqueous Sample 1	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=L1 Top.mzdata.xml;p_L1 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Condensate Sample 1	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=L1 Bottom.mzdata.xml;p_L1 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Input Sample 1	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=L1 Input.mzdata.xml;p_L1 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Aqueous Sample 2	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=L2 Top.mzdata.xml;p_L2 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Condensate Sample 2	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=L2 Bottom.mzdata.xml;p_L2 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Input Sample 2	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=L2 Input.mzdata.xml;p_L2 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Aqueous Sample 3	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=L3 Top.mzdata.xml;p_L3 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Condensate Sample 3	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=L3 Bottom.mzdata.xml;p_L3 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 100 nM Input Sample 3	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=L3 Input.mzdata.xml;p_L3 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Aqueous Sample 1	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=M1 Top.mzdata.xml;p_M1 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Condensate Sample 1	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=M1 Bottom.mzdata.xml;p_M1 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Input Sample 1	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=M1 Input.mzdata.xml;p_M1 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Aqueous Sample 2	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=M2 Top.mzdata.xml;p_M2 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Condensate Sample 2	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=M2 Bottom.mzdata.xml;p_M2 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Input Sample 2	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=M2 Input.mzdata.xml;p_M2 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Aqueous Sample 3	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=M3 Top.mzdata.xml;p_M3 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Condensate Sample 3	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=M3 Bottom.mzdata.xml;p_M3 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 1 uM Input Sample 3	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=M3 Input.mzdata.xml;p_M3 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Aqueous Sample 1	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=H1 Top.mzdata.xml;p_H1 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Condensate Sample 1	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=H1 Bottom.mzdata.xml;p_H1 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Input Sample 1	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=H1 Input.mzdata.xml;p_H1 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Aqueous Sample 2	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=H2 Top.mzdata.xml;p_H2 Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Condensate Sample 2	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=H2 Bottom.mzdata.xml;p_H2 Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Input Sample 2	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=H2 Input.mzdata.xml;p_H2 Input.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Aqueous Sample 3	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	RAW_FILE_NAME=H4Top.mzdata.xml;p_H4Top.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Condensate Sample 3	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	RAW_FILE_NAME=H4Bottom.mzdata.xml;p_H4Bottom.mzdata.xml
SUBJECT_SAMPLE_FACTORS           	-	MED1 Library 10 uM Input Sample 3	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	RAW_FILE_NAME=H4Input.mzdata.xml;p_H4Input.mzdata.xml
#COLLECTION
CO:COLLECTION_SUMMARY            	Chemical library to perform condensate metabolomics with a defined set of
CO:COLLECTION_SUMMARY            	lipids. To analyze a defined set of lipids at known concentrations, the
CO:COLLECTION_SUMMARY            	following molecules were purchased: phosphatidylcholine (3:0/3:0)(Cayman
CO:COLLECTION_SUMMARY            	Chemical, 32703), phosphatidylcholine (9:0/9:0)(Cayman Chemical, 10009874),
CO:COLLECTION_SUMMARY            	phosphatidylcholine (12:0/12:0)(Echelon Biosciences, L-1112),
CO:COLLECTION_SUMMARY            	phosphatidylcholine (16:0/16:0)(Echelon Biosciences, L-1116),
CO:COLLECTION_SUMMARY            	phosphatidylcholine (18:0/18:0)(Echelon Biosciences, L-1118),
CO:COLLECTION_SUMMARY            	sn-glycero-3-phosphocholine, lysophosphatidylcholine (16:0)(Echelon Biosciences,
CO:COLLECTION_SUMMARY            	L-1516), palmitic acid (Sigma Aldrich, P5585), phosphatidylethanolamine
CO:COLLECTION_SUMMARY            	(16:0/16:0)(Avanti Polar Lipids, 850705), phosphatidylglycerol
CO:COLLECTION_SUMMARY            	(16:0/16:0)(Avanti Polar Lipids, 840455), phosphatidylinositol
CO:COLLECTION_SUMMARY            	(16:0/16:0)(Echelon Biosciences, P-0016), PIP2 (16:0/16:0)(Echelon Biosciences,
CO:COLLECTION_SUMMARY            	P-4516), phosphatidylserine (16:0/16:0)(Echelon Biosciences, L-3116). These
CO:COLLECTION_SUMMARY            	molecules were first dissolved in an appropriate organic solvent and then either
CO:COLLECTION_SUMMARY            	0.33 pmoles, 3.3 pmoles, or 33 pmoles of each molecule were combined in an
CO:COLLECTION_SUMMARY            	eppendorf tube. The organic solvents were removed using a SpeedVac Concentrator
CO:COLLECTION_SUMMARY            	(Savant, SPD131DDA) at 25oC and the dried chemical libraries were stored at
CO:COLLECTION_SUMMARY            	-80oC. Each tube containing a chemical library was used to perform a single
CO:COLLECTION_SUMMARY            	condensate metabolomics experiment. These libraries were initially re-suspended
CO:COLLECTION_SUMMARY            	in condensate buffer (50 mM NH4HCO3 pH 7.5, 50 mM NaCl, 1 mM DTT). Molecules
CO:COLLECTION_SUMMARY            	that were not fully soluble in condensate buffer were removed by centrifugation
CO:COLLECTION_SUMMARY            	(2x5 min, 16,000 g each), in which only the supernatant was retained. Due to the
CO:COLLECTION_SUMMARY            	lack of crowding agents, phase separation required greater concentrations of
CO:COLLECTION_SUMMARY            	protein and RNA than typically employed for nucleocapsid and MED1 condensate
CO:COLLECTION_SUMMARY            	formation17,32. Purified protein (37.5 μM) was centrifuged (1 min, 1,000 g) to
CO:COLLECTION_SUMMARY            	disrupt any existing condensates and to remove any precipitated proteins.
CO:COLLECTION_SUMMARY            	Purified protein (final concentration, 30 μM) was combined with metabolites
CO:COLLECTION_SUMMARY            	(final concentration, 150 g/l protein equivalent) and then phage lambda RNA
CO:COLLECTION_SUMMARY            	(final concentration, 0.15 μM) in a total volume of 300 µl. An input sample
CO:COLLECTION_SUMMARY            	(10 µl) was saved and then the sample was allowed to incubate for 10 min at
CO:COLLECTION_SUMMARY            	25oC. Condensates were then separated from the aqueous environment by
CO:COLLECTION_SUMMARY            	centrifugation (10 min, 12,500 g, 25oC). The aqueous phase was removed from the
CO:COLLECTION_SUMMARY            	condensate phase and then equal volumes (usually ~ 2 µl) of the aqueous
CO:COLLECTION_SUMMARY            	fraction, condensate fraction and input sample were processed for metabolomics
CO:COLLECTION_SUMMARY            	using identical approaches as described below. First the samples were diluted in
CO:COLLECTION_SUMMARY            	ammonium bicarbonate buffer (50 mM NH4HCO3 pH 7.5) and briefly heated (2 min,
CO:COLLECTION_SUMMARY            	65oC) to disrupt condensates before being added immediately to 4x volume of
CO:COLLECTION_SUMMARY            	ice-cold 100% methanol to precipitate protein and RNA. Protein and RNA were
CO:COLLECTION_SUMMARY            	separated from metabolites by vortexing the samples (2 min), followed by
CO:COLLECTION_SUMMARY            	incubation at -25oC (10 min) and then centrifugation (5 min, 13,000 rpm). The
CO:COLLECTION_SUMMARY            	supernatant was saved and the process was repeated on the pellet two more times
CO:COLLECTION_SUMMARY            	after adding 200 µl of 80% methanol each time to the pellet. The three
CO:COLLECTION_SUMMARY            	supernatants were combined and centrifuged (10 min, 14000 rpm) to remove any
CO:COLLECTION_SUMMARY            	additional macromolecules. The final supernatant was collected and dried using a
CO:COLLECTION_SUMMARY            	SpeedVac Concentrator run at 25oC.
CO:SAMPLE_TYPE                   	Synthetic Mixture
CO:COLLECTION_METHOD             	80% methanol
CO:STORAGE_CONDITIONS            	-80℃
#TREATMENT
TR:TREATMENT_SUMMARY             	Chemical libraries were added with individual molecules at a concentration of
TR:TREATMENT_SUMMARY             	100 nM, 1 uM or 10 uM to the condensate-forming low-complexity domain MED1
TR:TREATMENT_SUMMARY             	tagged with mCherry. Condensates were stimulated with 150 nM RNA. Condensates
TR:TREATMENT_SUMMARY             	were centrifuged to the bottom of a 600 ul tube. Equal fractions from the input
TR:TREATMENT_SUMMARY             	sample, aqueous phase and condensate phases were collected separately.
TR:TREATMENT_SUMMARY             	Metabolites were extracted from each fraction.
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	Metabolites were extracted from each fraction and the input for LC-MS as
SP:SAMPLEPREP_SUMMARY            	follows. First the samples were diluted in ammonium bicarbonate buffer (50 mM
SP:SAMPLEPREP_SUMMARY            	NH4HCO3 pH 7.5) and briefly heated (2 min, 65oC) to disrupt condensates before
SP:SAMPLEPREP_SUMMARY            	being added immediately to 4x volume of ice-cold 100% methanol to precipitate
SP:SAMPLEPREP_SUMMARY            	protein and RNA. Protein and RNA were separated from metabolites by vortexing
SP:SAMPLEPREP_SUMMARY            	the samples (2 min), followed by incubation at -25oC (10 min) and then
SP:SAMPLEPREP_SUMMARY            	centrifugation (5 min, 13,000 rpm). The supernatant was saved and the process
SP:SAMPLEPREP_SUMMARY            	was repeated on the pellet two more times after adding 200 µl of 80% methanol
SP:SAMPLEPREP_SUMMARY            	each time to the pellet. The three supernatants were combined and centrifuged
SP:SAMPLEPREP_SUMMARY            	(10 min, 14000 rpm) to remove any additional macromolecules. The final
SP:SAMPLEPREP_SUMMARY            	supernatant was collected and dried using a SpeedVac Concentrator run at 25oC.
SP:SAMPLEPREP_SUMMARY            	On the day of metabolite analysis, dried-down extracts were reconstituted in 150
SP:SAMPLEPREP_SUMMARY            	µl 70% acetonitrile, at a relative protein concentration of ~ 2 µg/µl, and 4
SP:SAMPLEPREP_SUMMARY            	µl of this reconstituted extract was injected for LC/MS-based untargeted
SP:SAMPLEPREP_SUMMARY            	metabolite profiling.
SP:EXTRACT_STORAGE               	-80℃
#CHROMATOGRAPHY
CH:CHROMATOGRAPHY_SUMMARY        	Tissue extracts were analyzed by LC/MS as described previously, using a platform
CH:CHROMATOGRAPHY_SUMMARY        	comprised of an Agilent Model 1290 Infinity II liquid chromatography system
CH:CHROMATOGRAPHY_SUMMARY        	coupled to an Agilent 6550 iFunnel time-of-flight MS analyzer. Chromatography of
CH:CHROMATOGRAPHY_SUMMARY        	metabolites utilized aqueous normal phase (ANP) chromatography on a Diamond
CH:CHROMATOGRAPHY_SUMMARY        	Hydride column (Microsolv). Mobile phases consisted of: (A) 50% isopropanol,
CH:CHROMATOGRAPHY_SUMMARY        	containing 0.025% acetic acid, and (B) 90% acetonitrile containing 5 mM ammonium
CH:CHROMATOGRAPHY_SUMMARY        	acetate. To eliminate the interference of metal ions on chromatographic peak
CH:CHROMATOGRAPHY_SUMMARY        	integrity and electrospray ionization, EDTA was added to the mobile phase at a
CH:CHROMATOGRAPHY_SUMMARY        	final concentration of 5 µM. The following gradient was applied: 0-1.0 min, 99%
CH:CHROMATOGRAPHY_SUMMARY        	B; 1.0-15.0 min, to 20% B; 15.0 to 29.0, 0% B; 29.1 to 37min, 99% B.
CH:CHROMATOGRAPHY_TYPE           	Normal phase
CH:INSTRUMENT_NAME               	Agilent Model 1290 Infinity II liquid chromatography system
CH:COLUMN_NAME                   	Cogent Diamond Hydride (150 × 2.1 mm, 4um)
CH:SOLVENT_A                     	50% isopropanol, containing 0.025% acetic acid
CH:SOLVENT_B                     	90% acetonitrile containing 5 mM ammonium acetate
#ANALYSIS
AN:ANALYSIS_TYPE                 	MS
#MS
MS:INSTRUMENT_NAME               	Agilent 6550 QTOF
MS:INSTRUMENT_TYPE               	QTOF
MS:MS_TYPE                       	Other
MS:ION_MODE                      	POSITIVE
MS:MS_COMMENTS                   	LC/MS-based targeted and untargeted metabolite profiling. For targeted analysis,
MS:MS_COMMENTS                   	raw LC/MS data was extracted by MassProfinder 8.0 (Agilent Technologies) using
MS:MS_COMMENTS                   	an in-house annotated personal metabolite database that contains 863 metabolites
MS:MS_COMMENTS                   	(Agilent Technologies). Additionally, molecular feature extraction (MFE) was
MS:MS_COMMENTS                   	performed for untargeted metabolite profiling using MassProfinder 8.0 (Agilent
MS:MS_COMMENTS                   	Technologies). The untargeted molecular features were imported into MassProfiler
MS:MS_COMMENTS                   	Professional 15.1 (MPP, Agilent Technologies) and searched against Metlin
MS:MS_COMMENTS                   	personal metabolite database (PCDL database 8.0), Human Metabolome Database
MS:MS_COMMENTS                   	(HMDB) and an in-house phospholipid database for tentative metabolite ID
MS:MS_COMMENTS                   	assignments, based on monoisotopic neutral mass (< 5 ppm mass accuracy) matches.
MS:MS_COMMENTS                   	Furthermore, a molecular formula generator (MFG) algorithm in MPP was used to
MS:MS_COMMENTS                   	generate and score empirical molecular formulae, based on a weighted
MS:MS_COMMENTS                   	consideration of monoisotopic mass accuracy, isotope abundance ratios, and
MS:MS_COMMENTS                   	spacing between isotope peaks. A tentative compound ID was assigned when PCDL
MS:MS_COMMENTS                   	database and MFG scores concurred for a given candidate molecule. Tentatively
MS:MS_COMMENTS                   	assigned molecules were reextracted using Profinder 8.0 for confirmation of
MS:MS_COMMENTS                   	untargeted results. For phospholipids, assignment of IDs was based on the
MS:MS_COMMENTS                   	defined pattern of neutral loss and head group fragment ions. Metabolites from
MS:MS_COMMENTS                   	targeted and untargeted extraction were combined for further statistical
MS:MS_COMMENTS                   	analysis among groups of input, aqueous and condensate fractions. Metabolites
MS:MS_COMMENTS                   	were removed from our analysis if they had a low ion count or high variation in
MS:MS_COMMENTS                   	input samples. Measurements of metabolite ion counts in input samples should be
MS:MS_COMMENTS                   	replicates across experiments. As such, differences in metabolite ion counts
MS:MS_COMMENTS                   	reflect experimental variability. To determine appropriate cut-offs, we examined
MS:MS_COMMENTS                   	the relationship between metabolite ion counts and their variation across input
MS:MS_COMMENTS                   	sample technical replicates. Metabolites with a median of < 1000 ion
MS:MS_COMMENTS                   	counts/sample tended to have high variation across samples. As a result, these
MS:MS_COMMENTS                   	metabolites were removed. Metabolites were also removed with > 2.5 standard
MS:MS_COMMENTS                   	deviation in log2(ion counts) since the input measurements for these metabolites
MS:MS_COMMENTS                   	were particularly unreliable relative to what was observed for other
MS:MS_COMMENTS                   	metabolites.
#MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS	Ion counts
MS_METABOLITE_DATA_START
Samples	MED1 Library 100 nM Condensate Sample 1	MED1 Library 100 nM Condensate Sample 2	MED1 Library 100 nM Condensate Sample 3	MED1 Library 1 uM Condensate Sample 1	MED1 Library 1 uM Condensate Sample 2	MED1 Library 1 uM Condensate Sample 3	MED1 Library 10 uM Condensate Sample 1	MED1 Library 10 uM Condensate Sample 2	MED1 Library 10 uM Condensate Sample 3	MED1 Library 100 nM Input Sample 1	MED1 Library 100 nM Input Sample 2	MED1 Library 100 nM Input Sample 3	MED1 Library 1 uM Input Sample 1	MED1 Library 1 uM Input Sample 2	MED1 Library 1 uM Input Sample 3	MED1 Library 10 uM Input Sample 1	MED1 Library 10 uM Input Sample 2	MED1 Library 10 uM Input Sample 3	MED1 Library 100 nM Aqueous Sample 1	MED1 Library 100 nM Aqueous Sample 2	MED1 Library 100 nM Aqueous Sample 3	MED1 Library 1 uM Aqueous Sample 1	MED1 Library 1 uM Aqueous Sample 2	MED1 Library 1 uM Aqueous Sample 3	MED1 Library 10 uM Aqueous Sample 1	MED1 Library 10 uM Aqueous Sample 2	MED1 Library 10 uM Aqueous Sample 3
Factors	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:condensate	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:input	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:100 nM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:1 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous	metabolite_source:10 uM library | protein:MED1 | RNA:150 nM | fraction:aqueous
sn-glycero-3-phosphocholine	95048.1174072264	100224.872705688	94638.0192089843	1284574.05557764	1138342.6783078	1241890.90176514	16152886.5060031	11211011.2303279	19758735.5782851	96724.2498474121	128106.919326782	79610.6025149535	765380.873909913	966822.029629639	1342419.20349756	12854863.5969029	12104538.220179	18744314.078145	95444.5336502074	201480.050327698	188447.506175415	854459.85141803	998939.11391327	1395907.91194153	12754543.8810164	11861698.8723758	25554795.557002
PC(3:0/3:0)	37904.509345703	36516.058303833	36904.7085583496	435969.308160858	409727.241641968	375971.15836731	4348339.40582068	3243430.39630319	3978967.42426336	44342.8102616882	59421.6902583007	26269.0831956787	380699.29848938	485214.806607056	635313.734433104	6096978.72825327	5983089.07500931	5853145.72592835	37179.5102670289	47297.159460144	41825.835955963	424408.876849976	475930.249510529	685970.636085021	6116260.57893403	5621820.67922723	7371086.27663526
LysoPC(16:0)	130813.178357239	108118.949953613	70720.796734314	41352519.0267138	35414893.84885	28296206.7980412	356944124.603669	435943882.399087	310478501.820921	49503.799115448	16682.1495372009	4685.44190460212	98569.4470388795	144878.740387085	200547.765993195	7450005.86096247	9603030.33540649	5121315.06491541	9720.59903503411	77333.0235061035	106468.583589477	89486.9098010254	53820.6524229431	88581.7087901308	2613152.02766937	2872667.96398102	2571715.10457385
PC(9:0/9:0)	169286.358966613	74103.6051660155	52645.9196926117	9805265.98941798	6724835.57763402	2471604.33208551	79530021.1065523	81412153.8830489	90731874.4491328	7842.5623271179	7418.34326606752	6456.30544938665	69563.4439321136	115108.179079773	160099.97526944	3327009.74171201	3434332.92976468	3067870.11326956	7081.10449246219	5102.60064677428	5464.27256140138	110400.513964142	79514.9236986388	140775.839024353	3654019.18078528	2422723.34535745	7047426.59050036
PC(12:0/12:0)	7442421.29723936	6055102.28189304	1538804.88001962	67104304.4178854	69489902.3530198	62738581.332774	127223011.144884	130602357.596052	133940789.245777	49833.4628390026	46918.6545793552	16313.4282150269	615105.526557139	985794.858529677	901209.199012718	13269152.9566235	16946670.8407844	8986403.09486015	26659.0130587854	23280.9157515239	16535.9216845894	408819.044412792	192067.290703156	270796.495883645	3928333.70631377	5512871.45920262	3212858.50196454
PC(16:0/16:0)	4076404.5842821	3796470.93909265	2586286.55728192	26731786.7667313	29279957.5035482	25159713.3167744	34338052.7869029	31498700.8792181	41900980.813126	19555.0864036236	29225.6973941564	10278.0444830208	293387.366582577	563181.024513028	249026.606534677	5915661.71989481	7155938.18439772	6020717.88453119	135	5850.23677630229	11308.8708893365	32134.2056327476	11279.0395979595	26739.9993406743	2544393.68023555	3948402.39621762	2867495.27110053
PC(18:0/18:0)	130472.454877377	60986.4189372309	97814.0409411772	222811.057786125	311196.965478634	223203.20970137	754937.140845665	498232.220667358	581956.784154064	135	512.376852874763	135	135	9805.08677406595	1235.23716801451	172321.356853958	200409.572277885	178871.444849998	135	135	135	135	135	135	92052.3405347557	161374.774243339	88524.0946618654
PE(16:0/16:0)	573485.63262071	682646.408398283	573945.728227174	476639.618831216	490774.860759527	402820.379565217	163814.138229065	61308.2699658203	17821.8550848388	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135	135
MS_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name	Mass	RT	KEGG	Formula	PubChem	CAS
sn-glycero-3-phosphocholine	257.1032	14.81	C00670	C8H21NO6P	3939	28319-77-9
PC(3:0/3:0)	370.1597	11.77		C14H28NO8P	24779217	66414-33-3
LysoPC(16:0)	495.3336	10.18		C24H50NO7P	460602	17364-16-8
PC(9:0/9:0)	510.3154	9.41		C26H52NO8P	3082274	27869-45-0
PC(12:0/12:0)	622.4417	8.81		C32H64NO8P	512874	18194-25-7
PC(16:0/16:0)	733.5636	8.47	D03585	C40H80NO8P	160339	63-89-8
PC(18:0/18:0)	790.6277	8.37		C44H88NO8P	94190	816-94-4
PE(16:0/16:0)	691.507	5.47		C37H74NO8P	445468	923-61-5
METABOLITES_END
#END