#METABOLOMICS WORKBENCH TruxalCarlson_20200324_121313 DATATRACK_ID:1951 STUDY_ID:ST001393 ANALYSIS_ID:AN002325 PROJECT_ID:PR000956
VERSION             	1
CREATED_ON             	June 4, 2020, 4:06 pm
#PROJECT
PR:PROJECT_TITLE                 	Sea-ice diatom compatible solute shifts
PR:PROJECT_TYPE                  	Marine Metabolomics
PR:PROJECT_SUMMARY               	Sea-ice algae provide an important source of primary production in polar
PR:PROJECT_SUMMARY               	regions, yet we have limited understanding of their responses to the seasonal
PR:PROJECT_SUMMARY               	cycling of temperature and salinity. Using a targeted liquid chromatography-mass
PR:PROJECT_SUMMARY               	spectrometry-based metabolomics approach, we found that axenic cultures of the
PR:PROJECT_SUMMARY               	Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in
PR:PROJECT_SUMMARY               	their metabolomes when grown in a matrix of conditions that included
PR:PROJECT_SUMMARY               	temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively
PR:PROJECT_SUMMARY               	small changes in growth rate. Temperature exerted a greater effect than salinity
PR:PROJECT_SUMMARY               	on cellular metabolite pool sizes, though the N- or S-containing compatible
PR:PROJECT_SUMMARY               	solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT),
PR:PROJECT_SUMMARY               	dimethylsulfoniopropionate (DMSP), and proline responded strongly to both
PR:PROJECT_SUMMARY               	temperature and salinity, suggesting complexity in their control. We saw the
PR:PROJECT_SUMMARY               	largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but
PR:PROJECT_SUMMARY               	potential compatible solute, reached the highest intracellular compatible solute
PR:PROJECT_SUMMARY               	concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic
PR:PROJECT_SUMMARY               	sea-ice diatom communities, we found extensive overlap in metabolite profiles,
PR:PROJECT_SUMMARY               	highlighting the relevance of culture-based studies to probe environmental
PR:PROJECT_SUMMARY               	questions. Large changes in sea-ice diatom metabolomes and compatible solutes
PR:PROJECT_SUMMARY               	over a seasonal cycle could be significant components of biogeochemical cycling
PR:PROJECT_SUMMARY               	within sea ice.
PR:INSTITUTE                     	University of Washington
PR:DEPARTMENT                    	School of Oceanography
PR:LABORATORY                    	Ingalls Lab
PR:LAST_NAME                     	Dawson
PR:FIRST_NAME                    	Hannah
PR:ADDRESS                       	1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195
PR:EMAIL                         	hmdawson@uw.edu
PR:PHONE                         	2062216750
PR:FUNDING_SOURCE                	Booth Foundation, NSF, UW Graduate Top Scholar Award, Gordon and Betty Moore
PR:FUNDING_SOURCE                	Foundation
PR:PUBLICATIONS                  	Dawson et al., Elementa
#STUDY
ST:STUDY_TITLE                   	Sea-ice diatom compatible solute shifts
ST:STUDY_TYPE                    	Compatible solutes were quantified in sea-ice diatoms
ST:STUDY_SUMMARY                 	Sea-ice algae provide an important source of primary production in polar
ST:STUDY_SUMMARY                 	regions, yet we have limited understanding of their responses to the seasonal
ST:STUDY_SUMMARY                 	cycling of temperature and salinity. Using a targeted liquid chromatography-mass
ST:STUDY_SUMMARY                 	spectrometry-based metabolomics approach, we found that axenic cultures of the
ST:STUDY_SUMMARY                 	Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in
ST:STUDY_SUMMARY                 	their metabolomes when grown in a matrix of conditions that included
ST:STUDY_SUMMARY                 	temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively
ST:STUDY_SUMMARY                 	small changes in growth rate. Temperature exerted a greater effect than salinity
ST:STUDY_SUMMARY                 	on cellular metabolite pool sizes, though the N- or S-containing compatible
ST:STUDY_SUMMARY                 	solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT),
ST:STUDY_SUMMARY                 	dimethylsulfoniopropionate (DMSP), and proline responded strongly to both
ST:STUDY_SUMMARY                 	temperature and salinity, suggesting complexity in their control. We saw the
ST:STUDY_SUMMARY                 	largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but
ST:STUDY_SUMMARY                 	potential compatible solute, reached the highest intracellular compatible solute
ST:STUDY_SUMMARY                 	concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic
ST:STUDY_SUMMARY                 	sea-ice diatom communities, we found extensive overlap in metabolite profiles,
ST:STUDY_SUMMARY                 	highlighting the relevance of culture-based studies to probe environmental
ST:STUDY_SUMMARY                 	questions. Large changes in sea-ice diatom metabolomes and compatible solutes
ST:STUDY_SUMMARY                 	over a seasonal cycle could be significant components of biogeochemical cycling
ST:STUDY_SUMMARY                 	within sea ice.
ST:INSTITUTE                     	University of Washington
ST:DEPARTMENT                    	School of Oceanography
ST:LABORATORY                    	Ingalls Lab
ST:LAST_NAME                     	Dawson
ST:FIRST_NAME                    	Hannah
ST:ADDRESS                       	1501 NE Boat Street, Marine Science Building, Room G, Seattle, WA 98195
ST:EMAIL                         	hmdawson@uw.edu
ST:PHONE                         	2062216750
ST:PUBLICATIONS                  	Dawson et al., Elementa
#SUBJECT
SU:SUBJECT_TYPE                  	Other
SU:SUBJECT_SPECIES               	Nitzschia lecointei
SU:TAXONOMY_ID                   	186028
SU:GENDER                        	Not applicable
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_A	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=A; RFU=605.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_A;170413_Smp_40ppt4C_C;170410_Smp_32ppt-1C_A
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_B	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=B; RFU=551.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_B;170413_Smp_32ppt-1C_B;170410_Smp_32ppt-1C_B
SUBJECT_SAMPLE_FACTORS           	-	32ppt-1C_C	Type:Smp | Salinity:32 | Temp_degC:-1	Replicate=C; RFU=550.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt-1C_C;170413_Smp_32ppt-1C_C;170410_Smp_32ppt-1C_C
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_A	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=A; RFU=847.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_A;170413_Smp_32ppt4C_B;170410_Smp_32ppt4C_A
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_B	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=B; RFU=967.1; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_B;170413_Smp_32ppt4C_A;170410_Smp_32ppt4C_B
SUBJECT_SAMPLE_FACTORS           	-	32ppt4C_C	Type:Smp | Salinity:32 | Temp_degC:4	Replicate=C; RFU=918.5; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_32ppt4C_C;170413_Smp_32ppt4C_C;170410_Smp_32ppt4C_C
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_A	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=A; RFU=860.2; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_A;170413_Smp_40ppt-1C_A;170410_Smp_40ppt-1C_A
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_B	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_B;170413_Smp_40ppt4C_B;170410_Smp_40ppt-1C_B
SUBJECT_SAMPLE_FACTORS           	-	40ppt-1C_C	Type:Smp | Salinity:40 | Temp_degC:-1	Replicate=C; RFU=814.3; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt-1C_C;170413_Smp_40ppt-1C_C;170410_Smp_40ppt-1C_C
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_A	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=A; RFU=581.8; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_A;170413_Smp_40ppt4C_A;170410_Smp_40ppt4C_A
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_B	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=B; RFU=681.6; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_B;170413_Smp_40ppt-1C_B;170410_Smp_40ppt4C_B
SUBJECT_SAMPLE_FACTORS           	-	40ppt4C_C	Type:Smp | Salinity:40 | Temp_degC:4	Replicate=C; RFU=662; Vol_L=0.07; RAW_FILE_NAME=170410_Smp_40ppt4C_C;170413_Smp_32ppt-1C_A;170410_Smp_40ppt4C_C
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_1	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=1; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_1;170615_Blk_ASWFilterBlk_1;170612_Blk_ASWFilterBlk_1
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_2	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=2; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_2;170615_Blk_ASWFilterBlk_2;170612_Blk_ASWFilterBlk_2
SUBJECT_SAMPLE_FACTORS           	-	ASWFilterBlk_3	Type:Blk | Salinity:NA | Temp_degC:NA	Replicate=3; RFU=NA; Vol_L=0.3; RAW_FILE_NAME=170612_Blk_ASWFilterBlk_3;170615_Blk_ASWFilterBlk_3;170612_Blk_ASWFilterBlk_3
SUBJECT_SAMPLE_FACTORS           	-	MediaBlk_ppt32	Type:Blk | Salinity:32 | Temp_degC:NA	Replicate=ppt32; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt32;170413_Blk_MediaBlk_ppt32;170410_Blk_MediaBlk_ppt32
SUBJECT_SAMPLE_FACTORS           	-	MediaBlk_ppt40	Type:Blk | Salinity:40 | Temp_degC:NA	Replicate=ppt40; RFU=1; Vol_L=0.07; RAW_FILE_NAME=170410_Blk_MediaBlk_ppt40;170413_Blk_MediaBlk_ppt40;170410_Blk_MediaBlk_ppt40
SUBJECT_SAMPLE_FACTORS           	-	S2C_4	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=4; RFU=NA; Vol_L=0.1671; RAW_FILE_NAME=170612_Smp_S2C_4;170615_Smp_S2C_4;170612_Smp_S2C_4
SUBJECT_SAMPLE_FACTORS           	-	S2C_5	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=5; RFU=NA; Vol_L=0.2486; RAW_FILE_NAME=170612_Smp_S2C_5;170615_Smp_S2C_5;170612_Smp_S2C_5
SUBJECT_SAMPLE_FACTORS           	-	S2C_6	Type:Smp | Salinity:NA | Temp_degC:NA	Replicate=6; RFU=NA; Vol_L=0.2049; RAW_FILE_NAME=170612_Smp_S2C_6;170615_Smp_S2C_6;170612_Smp_S2C_6
#COLLECTION
CO:COLLECTION_SUMMARY            	Cultured diatom cells at different salinities and temperatures grown to
CO:COLLECTION_SUMMARY            	exponential phase were filtered onto 0.2-micron filters and extracted for
CO:COLLECTION_SUMMARY            	metabolites as described in methods. Three dedicated ice cores were sampled from
CO:COLLECTION_SUMMARY            	the Chukchi Sea near Utqiaġvik, AK. The bottom 5-cm sections were placed in
CO:COLLECTION_SUMMARY            	polycarbonate tubs, allowed to melt at 4°C in artificial seawater, and filtered
CO:COLLECTION_SUMMARY            	onto 0.2-micron filters. Filters were extracted for metabolites as described in
CO:COLLECTION_SUMMARY            	methods. All filters were frozen in liquid nitrogen immediately after filtration
CO:COLLECTION_SUMMARY            	and stored in a -80 C freezer until extraction.
CO:SAMPLE_TYPE                   	Diatom cells/Particulate matter from sea ice cores
CO:STORAGE_CONDITIONS            	Described in summary
#TREATMENT
TR:TREATMENT_SUMMARY             	Diatom cells were cultured in a matrix of two temperatures (–1°C and 4°C)
TR:TREATMENT_SUMMARY             	and two salinities (32 and 40) in triplicate. There was no treatment for the sea
TR:TREATMENT_SUMMARY             	ice cores – this was a study of how the cultured diatoms compare to the
TR:TREATMENT_SUMMARY             	diatom-dominated Arctic sea-ice communities.
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	Each sample was extracted using a modified Bligh-Dyer extraction. Briefly,
SP:SAMPLEPREP_SUMMARY            	filters were cut up and put into 15 mL teflon centrifuge tubes containing a
SP:SAMPLEPREP_SUMMARY            	mixture of 100 µm and 400 µm silica beads. Heavy isotope-labeled internal
SP:SAMPLEPREP_SUMMARY            	standards were added along with ~2 mL of cold aqueous solvent (50:50
SP:SAMPLEPREP_SUMMARY            	methanol:water) and ~3 mL of cold organic solvent (dichloromethane). The samples
SP:SAMPLEPREP_SUMMARY            	were shaken on a FastPrep-24 Homogenizer for 30 seconds and chilled in a -20 °C
SP:SAMPLEPREP_SUMMARY            	freezer repeatedly for three cycles of bead-beating and a total of 30 minutes of
SP:SAMPLEPREP_SUMMARY            	chilling. The organic and aqueous layers were separated by spinning samples in a
SP:SAMPLEPREP_SUMMARY            	centrifuge at 4,300 rpm for 2 minutes at 4 °C. The aqueous layer was removed to
SP:SAMPLEPREP_SUMMARY            	a new glass centrifuge tube. The remaining organic fraction was rinsed three
SP:SAMPLEPREP_SUMMARY            	more times with additions of 1 to 2 mL of 50:50 methanol:water. All aqueous
SP:SAMPLEPREP_SUMMARY            	rinses were combined for each sample and dried down under N2 gas. The remaining
SP:SAMPLEPREP_SUMMARY            	organic layer was transferred into a clean glass centrifuge tube and the
SP:SAMPLEPREP_SUMMARY            	remaining bead beating tube was rinsed two more times with cold organic solvent.
SP:SAMPLEPREP_SUMMARY            	The combined organic rinses were centrifuged, transferred to a new tube, and
SP:SAMPLEPREP_SUMMARY            	dried under N2 gas. Dried aqueous fractions were re-dissolved in 380 µL of
SP:SAMPLEPREP_SUMMARY            	water. Dried organic fractions were re-dissolved in 380 µL of 1:1
SP:SAMPLEPREP_SUMMARY            	water:acetonitrile. 20 µL of isotope-labeled injection standards in water were
SP:SAMPLEPREP_SUMMARY            	added to both fractions. Blank filters were extracted alongside samples as
SP:SAMPLEPREP_SUMMARY            	methodological blanks.
SP:PROCESSING_STORAGE_CONDITIONS 	On ice
SP:EXTRACTION_METHOD             	Bligh-Dyer
SP:EXTRACT_STORAGE               	-80℃
#CHROMATOGRAPHY
CH:CHROMATOGRAPHY_SUMMARY        	See attached summary
CH:CHROMATOGRAPHY_TYPE           	HILIC
CH:INSTRUMENT_NAME               	Waters Acquity I-Class
CH:COLUMN_NAME                   	SeQuant ZIC- pHILIC (150 x 2.1mm, 5um)
#ANALYSIS
AN:ANALYSIS_TYPE                 	MS
#MS
MS:INSTRUMENT_NAME               	Waters Xevo-TQ-S
MS:INSTRUMENT_TYPE               	Triple quadrupole
MS:MS_TYPE                       	ESI
MS:ION_MODE                      	NEGATIVE
MS:MS_COMMENTS                   	See protocol, data from culture samples
#MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS	Normalized Peak Area Per RFU
MS_METABOLITE_DATA_START
Samples	32ppt-1C_A	32ppt-1C_B	32ppt-1C_C	32ppt4C_A	32ppt4C_B	32ppt4C_C	40ppt-1C_A	40ppt-1C_B	40ppt-1C_C	40ppt4C_A	40ppt4C_B	40ppt4C_C	MediaBlk_ppt32	MediaBlk_ppt40
Factors	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:-1	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:32 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:-1	Type:Smp | Salinity:40 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:4	Type:Smp | Salinity:40 | Temp_degC:4	Type:Blk | Salinity:32 | Temp_degC:NA	Type:Blk | Salinity:40 | Temp_degC:NA
Aconitic Acid	1263.206737	1330.517054	1525.375954	6681.110849	6474.158825	7927.185629	1285.25808	1886.373239	1340.099472	6133.619801	5163.460974	5108.241692	171982	102632
ADP	9076.560436	9174.027576	11458.33273	4501.291465	4005.127701	4133.589548	4626.076494	6930.001467	5849.626673	5410.374699	3959.60534	5280.800604	49500	50730
AMP	15647.28057	16508.23288	14784.1824	6556.047023	6786.442885	8962.662085	12663.98877	12547.87362	12096.30462	8473.951746	6278.09343	6152.730136	11689.61315	255.4252162
Citric Acid	116700.8454	123484.5138	139497.4936	154071.1227	148818.3145	143974.7066	119619.2978	194108.885	181242.8835	340577.2705	290672.6761	289004.6647	388193	744760
Cysteic Acid	4832.253334	5722.604683	5176.295614	3434.963754	2329.601737	4298.379048	2741.272711	2677.123191	2465.475131	3088.840194	2576.392243	2437.280264	436.0600303	1619.88348
FAD	1372.308454	1233.70283	1456.834363	566.7382836	803.3564264	841.7397931	1283.29342	1116.075411	1060.185435	1178.358542	1062.009977	728.9833837	317	0
Fructose 6 phosphate	6760.885073	7952.982583	7254.249909	2899.308228	2683.409161	2946.42896	4891.946059	6252.388498	5757.187769	3762.67274	3612.46919	3597.596677	0	0
Fumaric Acid	1078.475536	632.071887	847.6615919	906.3160467	948.2091	987.6933845	851.0465223	927.3983303	807.0077496	1857.750615	1506.929334	1296.148327	113586.0898	156504.3041
Glucose 6 phosphate	8133.395109	4908.892141	5793.203649	2361.567735	2176.584979	4102.695545	5969.648812	6183.643549	4116.603769	4754.723912	2342.236406	2763.546669	0	0
GMP	2245.35876	2210.082222	1544.809839	858.6941814	672.7208023	985.4606528	1041.076709	1474.490744	1469.892004	627.7900636	646.1536894	424.2393101	1490.50495	16920.06661
Isethionic Acid	3225.331263	3120.565878	3840.465668	3230.43936	2960.779245	2694.32524	2716.719258	2730.978169	2719.035329	3968.483945	3189.704633	2981.343938	633432.7492	460560.6315
Ketoglutaric Acid	10055.25594	10586.15747	9995.005449	14457.25062	14892.48785	14009.07676	7615.503371	9935.720364	9117.740391	55469.0581	41094.74765	47114.54079	686309	381871
Malic Acid	25885.36328	26438.83164	29470.3814	17033.77169	14204.50832	15734.63364	14921.43688	19709.84008	19368.04495	33894.13544	26757.87265	30998.79154	5452386	5576339
NAD	4485.297226	4202.666909	5144.976389	2080.30693	1988.523421	2314.366903	2902.137875	3383.302523	2496.260592	2800.37298	2296.087148	2328.318731	303	0
NADP	2210.701783	2185.968795	2488.545223	941.7270688	406.774894	932.9014698	1382.099512	1985.909624	1089.180892	774.4173255	1161.135563	1094.889728	8315	412
PEP	217.5247688	477.6124819	169.3152924	1203.262897	823.7286734	420.6782798	766.0020925	624.320716	615.857792	868.0955655	623.254108	438.2628399	0	328
Sucrose	108.2527623	224.9555784	143.0574114	220.4839809	75.98541294	160.1613044	176.4782868	216.4963521	49.42474202	455.9872583	144.1909943	298.5633866	22352.58848	15075.92414
Sulfolactic acid	831.3973859	468.7565288	1088.827825	1078.611068	792.9825462	1397.23466	279.1883929	561.9641403	513.1318111	1645.035968	1542.51837	1363.746939	500880.5501	190826.2302
Taurine	3319.118666	4755.744292	3556.810071	11390.33656	10806.75736	11009.43603	3073.460343	4292.506067	3837.621743	13349.52972	10736.922	7878.686724	290.7021424	4544.629275
UDP-glucosamine	996.243395	961.9031205	1067.210316	479.1524023	536.2092855	506.9319543	553.7293653	1001.561033	723.9260715	1067.581643	721.0651408	650.9728097	275	0
UDP-glucose	11073.59974	10948.97859	7839.822012	887.8455908	3765.494778	2860.444203	6348.285282	7688.048709	6503.571165	2970.300791	3872.998826	2244.850453	0	0
Uridine	750.3352048	723.9096517	612.4772975	1165.083225	755.9342364	1288.476864	306.9065334	716.8559272	586.0628761	2071.6088	1193.588615	1136.723565	7967	1536
MS_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name	quantitated m/z	KEGGNAME	CHEBI	MS_method	KEGG ID
Aconitic Acid	173.008615	cis-Aconitate; cis-Aconitic acid	CHEBI:32805	HILIC_TQS_Neg	C00417
ADP	426.021596	ADP; Adenosine 5'-diphosphate	CHEBI:16761	HILIC_TQS_Neg	C00008
AMP	346.055262	AMP; Adenosine 5'-monophosphate; Adenylic acid; Adenylate; 5'-AMP; 5'-Adenylic acid; 5'-Adenosine monophosphate; Adenosine 5'-phosphate	CHEBI:16027	HILIC_TQS_Neg	C00020
Citric Acid	191.01918	Citrate; Citric acid; 2-Hydroxy-1,2,3-propanetricarboxylic acid; 2-Hydroxytricarballylic acid	CHEBI:30769	HILIC_TQS_Neg	C00158
Cysteic Acid	167.996671	L-Cysteate; L-Cysteic acid; 3-Sulfoalanine; 2-Amino-3-sulfopropionic acid	CHEBI:17285	HILIC_TQS_Neg	C00506
FAD	784.149317	F.D  Flavin adenine dinucleotide	CHEBI:16238	HILIC_TQS_Neg	C00016
Fructose 6 phosphate	259.021897	D-Fructose 6-phosphate; D-Fructose 6-phosphoric acid; Neuberg ester	CHEBI:15946	HILIC_TQS_Neg	C00085
Fumaric Acid	115.003135	Fumarate; Fumaric acid; trans-Butenedioic acid	CHEBI:18012	HILIC_TQS_Neg	C00122
Glucose 6 phosphate	259.021897	D-Glucose 6-phosphate; Glucose 6-phosphate; Robison ester	CHEBI:17665	HILIC_TQS_Neg	C00092
GMP	362.050178	GMP; Guanosine 5'-phosphate; Guanosine monophosphate; Guanosine 5'-monophosphate; Guanylic acid	CHEBI:17345	HILIC_TQS_Neg	C00144
Isethionic Acid	124.990857	2-Hydroxyethanesulfonate; 2-Hydroxyethanesulfonic acid; 2-Hydroxyethane-1-sulfonic acid; Isethionic acid; Isethionate	CHEBI:1157	HILIC_TQS_Neg	C05123
Ketoglutaric Acid	145.0137	2-Oxoglutarate; Oxoglutaric acid; 2-Ketoglutaric acid; alpha-Ketoglutaric acid	CHEBI:30915	HILIC_TQS_Neg	C00026
Malic Acid	133.0137	(S)-Malate; L-Malate; L-Apple acid; L-Malic acid; L-2-Hydroxybutanedioic acid; Malate; Malic acid	CHEBI:6650	HILIC_TQS_Neg	C00149
NAD	662.101304	NAD+; N.D  Nicotinamide adenine dinucleotide; DPN; Diphosphopyridine nucleotide; Nadide; beta-NAD+	CHEBI:15846	HILIC_TQS_Neg	C00003
NADP	742.067637	NADP+; NADP; Nicotinamide adenine dinucleotide phosphate; beta-Nicotinamide adenine dinucleotide phosphate; TPN; Triphosphopyridine nucleotide; beta-NADP+	CHEBI:18009	HILIC_TQS_Neg	C00006
PEP	166.974553	Phosphoenolpyruvate; Phosphoenolpyruvic acid; PEP	CHEBI:18021	HILIC_TQS_Neg	C00074
Sucrose	341.10839	Sucrose; Cane sugar; Saccharose; 1-alpha-D-Glucopyranosyl-2-beta-D-fructofuranoside	CHEBI:17992	HILIC_TQS_Neg	C00089
Sulfolactic acid	168.980687	3-Sulfolactate	CHEBI:50519	HILIC_TQS_Neg	C16069
Taurine	124.006841	Taurine; 2-Aminoethanesulfonic acid; Aminoethylsulfonic acid	CHEBI:15891	HILIC_TQS_Neg	C00245
UDP-glucosamine	606.073753	UDP-N-acetyl-alpha-D-glucosamine; UDP-N-acetyl-D-glucosamine; UDP-N-acetylglucosamine	CHEBI:16264	HILIC_TQS_Neg	C00043
UDP-glucose	565.047204	UDP-glucose; UDPglucose; UDP-D-glucose; Uridine diphosphate glucose; UDP-alpha-D-glucose	CHEBI:18066	HILIC_TQS_Neg	C00029
Uridine	243.061713	Uridine	CHEBI:16704	HILIC_TQS_Neg	C00299
METABOLITES_END
#END