#METABOLOMICS WORKBENCH cb1119fanlab_20240801_120053 DATATRACK_ID:5072 STUDY_ID:ST003407 ANALYSIS_ID:AN005591 PROJECT_ID:PR002109 VERSION 1 CREATED_ON August 15, 2024, 10:01 am #PROJECT PR:PROJECT_TITLE Deficiency in glutathione peroxidase 4 (GPX4) results in abnormal lens PR:PROJECT_TITLE development and newborn cataract PR:PROJECT_TYPE Lipidocmics PR:PROJECT_SUMMARY The human lens consists of a monolayer of lens epithelial cells and extensively PR:PROJECT_SUMMARY elongated fibers that are tightly aligned but separated by the plasma membrane. PR:PROJECT_SUMMARY The integrity of the lens plasma membrane is essential for maintaining lens PR:PROJECT_SUMMARY cellular structure, homeostasis, and transparency. Glutathione peroxidase 4 PR:PROJECT_SUMMARY (GPX4), a selenoenzyme, plays a critical role in protecting against lipid PR:PROJECT_SUMMARY peroxidation. This study aims to elucidate the role of GPX4 in maintaining lens PR:PROJECT_SUMMARY plasma membrane stability during lens development, utilizing in vitro, ex vivo, PR:PROJECT_SUMMARY and in vivo systems. By employing a lipidomics approach, we aim to understand PR:PROJECT_SUMMARY the phospholipid profile of the lens plasma membrane and its alterations PR:PROJECT_SUMMARY following the deletion of GPX4, a key lipid peroxidation detoxification enzyme. PR:PROJECT_SUMMARY Our findings reveal that the deletion of lens-specific GPX4 results in a PR:PROJECT_SUMMARY significant loss of unsaturated phospholipids and an increase in oxidized PR:PROJECT_SUMMARY phospholipids. Consequently, lenses deficient in GPX4 exhibit massive disruption PR:PROJECT_SUMMARY of lens fiber cell structure, significant loss of lens epithelial cells via PR:PROJECT_SUMMARY ferroptosis, and the formation of congenital cataracts. Our study underscores PR:PROJECT_SUMMARY the crucial role of GPX4 in lens development and transparency and offers a PR:PROJECT_SUMMARY potential intervention strategy to prevent lens developmental defects by PR:PROJECT_SUMMARY inhibiting lipid peroxidation. PR:INSTITUTE Augusta University PR:LAST_NAME Fan PR:FIRST_NAME Xingjun PR:ADDRESS 1460 Laney Walker Blvd, Augusta, GA 30912 PR:EMAIL xfan@augusta.edu PR:PHONE 7067212019 PR:FUNDING_SOURCE NEI #STUDY ST:STUDY_TITLE Deficiency in glutathione peroxidase 4 (GPX4) results in abnormal lens ST:STUDY_TITLE development and newborn cataract ST:STUDY_TYPE lipidomics ST:STUDY_SUMMARY This study aims to elucidate the role of GPX4 in lens plasma membrane stability ST:STUDY_SUMMARY during lens development using in vitro, ex vivo, and in vivo systems. We use ST:STUDY_SUMMARY lipidomics to analyze the profile of phospholipids and oxidized phospholipids in ST:STUDY_SUMMARY wild-type and GPX4 KO mice lenses at E18.5. E18.5 lenses were randomly pooled ST:STUDY_SUMMARY into 4 groups (10mg weight wet/sample) and were subjected to lipid extraction ST:STUDY_SUMMARY and mass spectrometry analysis. Following data collection, the analysis was ST:STUDY_SUMMARY conducted using LipidView and the LIPID MAPS® Structure Database (LMSD) ST:STUDY_SUMMARY software. A notable decrease in the levels of numerous phosphatidylethanolamine ST:STUDY_SUMMARY (PE), phosphatidylcholine (PC), phosphatidic acids (PA), and ST:STUDY_SUMMARY phosphatidylglycerol (PG) species was observed in Gpx4 KO lenses compared to WT. ST:STUDY_SUMMARY For example, PE 34:1 exhibited a significant decrease (p=0.0479) in Gpx4 KO ST:STUDY_SUMMARY lenses compared to WT, while PE 36:1 and PE 33:2 displayed a trend of lower ST:STUDY_SUMMARY levels in Gpx4 KO lenses relative to WT, albeit not statistically significant. ST:STUDY_SUMMARY Conversely, elevated levels of oxidized phospholipids, particularly oxidized PE, ST:STUDY_SUMMARY were detected in Gpx4 KO lenses compared to WT. Notably, significant increases ST:STUDY_SUMMARY were observed in phospholipid oxidation products, including PE(16:0/18:2(O))Na ST:STUDY_SUMMARY (p=0.0259) and PE(16:0/18:2(OH)(OOH)) (p=0.0401), with a trending increase in ST:STUDY_SUMMARY PE(16:0/12:1(COOH)(9OH)Na (p=0.0635) in Gpx4 KO lenses relative to WT. These ST:STUDY_SUMMARY findings strongly indicate that GPX4 deficiency induces lipid peroxidation, ST:STUDY_SUMMARY consequently altering the composition of plasma membrane lipids. ST:INSTITUTE Augusta University ST:LAST_NAME Fan ST:FIRST_NAME Xingjun ST:ADDRESS 1460 Laney Walker Blvd, Augusta, GA 30912 ST:EMAIL xfan@augusta.edu ST:PHONE 7067212019 ST:NUM_GROUPS 2 #SUBJECT SU:SUBJECT_TYPE Mammal SU:SUBJECT_SPECIES Mus musculus SU:TAXONOMY_ID 10090 SU:GENDER Male #FACTORS #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data SUBJECT_SAMPLE_FACTORS KO-1 KO-1_253 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-KO-1.mzML SUBJECT_SAMPLE_FACTORS KO-1 KO-1_283 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-KO-1.mzML SUBJECT_SAMPLE_FACTORS KO-1 KO-1_ida Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-KO-1.mzML SUBJECT_SAMPLE_FACTORS KO-2 KO-2_253 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-KO-2.mzML SUBJECT_SAMPLE_FACTORS KO-2 KO-2_283 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-KO-2.mzML SUBJECT_SAMPLE_FACTORS KO-2 KO-2_ida Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-KO-2.mzML SUBJECT_SAMPLE_FACTORS KO-3 KO-3_253 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-KO-3.mzML SUBJECT_SAMPLE_FACTORS KO-3 KO-3_283 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-KO-3.mzML SUBJECT_SAMPLE_FACTORS KO-3 KO-3_ida Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-KO-3.mzML SUBJECT_SAMPLE_FACTORS KO-4 KO-4_253 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-KO-4.mzML SUBJECT_SAMPLE_FACTORS KO-4 KO-4_283 Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-KO-4.mzML SUBJECT_SAMPLE_FACTORS KO-4 KO-4_ida Genotype:Gpx4 Knockout | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-KO-4.mzML SUBJECT_SAMPLE_FACTORS WT-1 WT-1_253 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-WT-1.mzML SUBJECT_SAMPLE_FACTORS WT-1 WT-1_283 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-WT-1.mzML SUBJECT_SAMPLE_FACTORS WT-1 WT-1_ida Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-WT-1.mzML SUBJECT_SAMPLE_FACTORS WT-2 WT-2_253 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-WT-2.mzML SUBJECT_SAMPLE_FACTORS WT-2 WT-2_283 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-WT-2.mzML SUBJECT_SAMPLE_FACTORS WT-2 WT-2_ida Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-WT-2.mzML SUBJECT_SAMPLE_FACTORS WT-3 WT-3_253 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-WT-3.mzML SUBJECT_SAMPLE_FACTORS WT-3 WT-3_283 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-WT-3.mzML SUBJECT_SAMPLE_FACTORS WT-3 WT-3_ida Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-WT-3.mzML SUBJECT_SAMPLE_FACTORS WT-4 WT-4_253 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11052023_Fan Phospholipids_Prec 255.3-WT-4.mzML SUBJECT_SAMPLE_FACTORS WT-4 WT-4_283 Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids_Prec 283.4-WT-4.mzML SUBJECT_SAMPLE_FACTORS WT-4 WT-4_ida Genotype:Wild type | Sample source:Eye lens tissue RAW_FILE_NAME(Raw file name)=Data11152023_Fan Phospholipids _EMS Neg + IDA_Oxi PL-WT-4.mzML #COLLECTION CO:COLLECTION_SUMMARY The eye lens tissues were homogenized with 500 μL of PBS in homogenizing tubes CO:COLLECTION_SUMMARY to obtain a homogeneous solution, followed by vortexing for 5 minutes at 4°C. CO:COLLECTION_SUMMARY The samples were then centrifuged at 13,000 rpm for 5 min at 4°C using an CO:COLLECTION_SUMMARY Eppendorf centrifuge 5810 R. All supernatants were transferred to 1.5 mL CO:COLLECTION_SUMMARY microcentrifuge tubes. To each tube, 1.2 mL of methanol and 600 μL of CO:COLLECTION_SUMMARY chloroform were added, and the tubes were vortexed for 30 minutes at speed 4 CO:COLLECTION_SUMMARY using a Fisher Scientific Multi-tube Vortexer. Subsequently, the samples were CO:COLLECTION_SUMMARY centrifuged at 4000 rpm for 10 minutes at 4°C, and the resulting supernatants CO:COLLECTION_SUMMARY were collected and transferred to clean 4 mL clear vials. The clear vials were CO:COLLECTION_SUMMARY weighed prior to the transfer of supernatants. CO:COLLECTION_PROTOCOL_FILENAME LCMS_Phospholipids_methodology.pdf CO:SAMPLE_TYPE Eye tissue #TREATMENT TR:TREATMENT_SUMMARY WT and KO mice lenses #SAMPLEPREP SP:SAMPLEPREP_SUMMARY To separate the organic and non-organic phases in the sample, 1 mL of 0.1M NaCl SP:SAMPLEPREP_SUMMARY and 1 mL of chloroform were added. The samples were vortexed for 10 minutes at SP:SAMPLEPREP_SUMMARY speed 4 and then centrifuged at 4000 rpm for 10 minutes. The samples were SP:SAMPLEPREP_SUMMARY separated into a top layer (non-organic phase) which was discarded, and the SP:SAMPLEPREP_SUMMARY lower layer (organic phase) was aliquoted separately using a Pasteur pipette and SP:SAMPLEPREP_SUMMARY dried under nitrogen. The dried lipid weight was recorded, and the total weight SP:SAMPLEPREP_SUMMARY was subtracted from the weight of the empty vial. The samples were stored at SP:SAMPLEPREP_SUMMARY -80°C until ready for LC-MS/MS analysis. Prior to LC-MS/MS analysis, samples SP:SAMPLEPREP_SUMMARY were reconstituted with 1 mL of 1:1 chloroform/methanol. Subsequently, 100 μL SP:SAMPLEPREP_SUMMARY of sample was transferred into HPLC vials and capped with septa and analyzed by SP:SAMPLEPREP_SUMMARY LC-MS/MS. SP:SAMPLEPREP_PROTOCOL_FILENAME LCMS_Phospholipids_methodology.pdf #CHROMATOGRAPHY CH:CHROMATOGRAPHY_SUMMARY See protocol file CH:CHROMATOGRAPHY_TYPE Reversed phase CH:INSTRUMENT_NAME Shimadzu EXION HPLC CH:COLUMN_NAME Thermo Accucore C18 (100 x 4.6mm, 2um) CH:SOLVENT_A 40% Water/60% acetonitrile CH:SOLVENT_B 90% isopropanol/10% acetonitrile; 10mM Ammonium Formate CH:FLOW_GRADIENT 0min, 20% B; 2min, 20% B; 2.1min, 40% B; 10min, 70% B; 10.1min, 100% B; 15min, CH:FLOW_GRADIENT 100% B; 15.1min, 20% B CH:FLOW_RATE 0.5mL/min CH:COLUMN_TEMPERATURE 50 CH:METHODS_FILENAME LCMS_Phospholipids_methodology.pdf #ANALYSIS AN:ANALYSIS_TYPE MS AN:ANALYSIS_PROTOCOL_FILE LCMS_Phospholipids_methodology.pdf #MS MS:INSTRUMENT_NAME ABI Sciex 5500 QTrap MS:INSTRUMENT_TYPE QTRAP MS:MS_TYPE ESI MS:ION_MODE NEGATIVE MS:MS_COMMENTS An EMS scan with IDA criteria and precursor scan at 255, and 283 were obtained MS:MS_COMMENTS for each sample, including the SRM 1950 (standard) + Splashmix (internal MS:MS_COMMENTS standard). The results were analyzed from these three scans and provide the MS:MS_COMMENTS oxidized PC or PE with palmitate and stearate, and other phospholipids. The scan MS:MS_COMMENTS range of EMS was from 200 Da to 1000 Da, and for the precursor scan, it was from MS:MS_COMMENTS 400 Da to 1000 Da. The mass spectrometer was operated in negative ionization MS:MS_COMMENTS mode. #MS_METABOLITE_DATA MS_METABOLITE_DATA:UNITS counts MS_METABOLITE_DATA_START Samples WT-1_253 WT-2_253 WT-3_253 WT-4_253 KO-1_253 KO-2_253 KO-3_253 KO-4_253 WT-1_ida WT-2_ida WT-3_ida WT-4_ida KO-1_ida KO-2_ida KO-3_ida KO-4_ida WT-1_283 WT-2_283 WT-3_283 WT-4_283 KO-1_283 KO-2_283 KO-3_283 KO-4_283 Factors Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Wild type | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue Genotype:Gpx4 Knockout | Sample source:Eye lens tissue PE(16:0/0:0) 7790.39 PE(16:0/0:0)CO 12106 8556.025 12403 PE(18:0/0:0) 16396 12482 PE(0:0/22:6) 7052.19 13633 PE(0:0/22:6)O 2189.87 PE(16:0/4:1(COH)) 3368.794 PE(16:0/4:1(COOH)) 5120.1 PE(16:0/7:2(CHO)(4O)) 4472.693 PE(16:0/8:2(COH)) 7933.71 PE(16:0/8:0(CHO)) 3130.168 PE(16:0/11:3(COOH)) 1947.59 PE(16:0/12:2(COH)) 1416.431 PE(16:0/12:1(COOH)(9OOH) 6964.11 4672.34 13889 PE(16:0/12:1(COOH)(9OH)Na 13653 22386 49787 42879 23082 49291 PE(16:0/18:2(9Z,12Z)) 35026 17258 PE(16:0/14:3(COOH)(O)(OH)) 3281.76 3430.33 PE(16:0/18:1(9Z)) 159260 46257 99209 70265 120420 103260 89607 130200 PE(16:0/18:2(O)) 28152 PE(16:0/18:1(9O)) 45310 11711 27384 29301 36499 35900 37228 42967 PE(16:0/18:2(9Z,12Z))Na 7141.171 PE(16:0/18:1(9Z))Na 6591.38 6096 PE(16:0/18:2(9,12O)) 39389 71058 59189 93040 PE(16:0/18:2(O)(OH)) 291260 162490 213760 208920 257030 230780 228520 245800 PE(16:0/18:2(O))Na 15876 29454 33333 PE(16:0/18:2(O)(OOH)) 5700.52 3371.85 PE(16:0/20:4) Na 3726.05 PE(16:0/18:2(OH)(OOH)) 1469.21 4060.735 4013.22 3750.586 5669.738 4376.62 4557.292 7269.5 PE(16:0/22:6) 10461 2354.049 7082.15 7028.113 10705 18229 14480 PE(16:0/20:4(O)2) 5296.61 PE(16:0/18:2(O)(OH))Na 9357.345 27797 PE(16:0/18:2(O)(OOH))Na 42196 PE(16:0/22:6(OOH)2) 2775.81 PE(16:0/20:4(OOH)3) 7146.232 PC(18:0/0:0) 7356.4 PC(18:0/8:2(COOH)(5O)) 50423 11770 24687 PC(18:0/11:3(COOH)) 159260 46257 99209 70265 120420 89607 130200 PC(18:0/11:2(CHO)(5,8O)) 3836.17 103260 PC(18:0/11:3(COOH)(O)(OH)) 80160 44138 56539 46296 69041 56423 56937 78632 PC(18:0/20:4(5Z,8Z,11Z,14Z)) 4296.14 2950.9 PC(16:0/18:0(9,12OOH)) 7933.71 PC(18:0/20:4(O)(OH)) 5488.67 5563.45 PC(18:0/20:4(OOH)2(O)) 33439 16879 11310 31479 12429 36466 PC(18:0/20:4(OOH)2(OH)) 10402 LPE 16:0 24832 7608.45 12551 7618.04 13512 11035 7757.23 9179.19 LPC 16:0 29248 5568.14 21589 6345.49 18121 6184.97 5753.37 13430 PA 34:0 (C16) 2732.56 1397.31 2316.7 1508.64 1406.55 1599.23 2674.37 PE 32:0 (C16) 8872.09 2921.31 7422.26 4372.36 4173.41 2944.12 6861.27 PE 33:2 20032 6307.1 16509 6905.95 7886.32 6394.99 12884 PE 34:1 52284 22365 39557 19380 24158 17580 34497 PE 36:1 (C16) 12221 6479.85 11271 6963.53 7404.62 5285.16 9751.45 PG 34:0 4039.87 3113.24 5034.55 5038.39 3901.73 2938.34 5493.26 PE 38:6 6978.41 944.34 5963.53 3516.31 4591.52 2026.98 6549.13 PC 36:4 2091.36 1953.93 1225.43 1818.88 PC 36:1 (C16) 2297.34 1460.65 193.86 2132.95 PG 36:0 41992 33200 45271 35161 38790 23728 47052 PC 38:6 4616.28 2856.05 4673.7 2606.53 2633.91 978.81 5697.5 PG 38:1 30063 21557 32046 21658 23647 15224 30260 LPE 18:0 5929.82 3719.3 4298.25 4219.3 12746 6210.53 4605.26 5596.49 LPC 18:0 1666.67 842.11 543.86 728.07 1912.28 912.28 1096.49 1201.75 PE 28:0 105.26 52.63 254.39 491.23 78.95 175.44 PA 32:1 315.79 192.98 140.35 0 298.25 245.61 201.75 526.32 PE 30:0 1631.58 254.39 473.68 245.61 236.84 745.61 PA 34:2 3061.4 131.58 1385.96 96.49 1605.26 140.35 2517.54 2070.18 PA 34:0 (C18) 219.3 192.98 70.18 PE 32:1 228.07 254.39 5789.47 7035.09 PE 32:0 (C18) 1008.77 201.75 561.4 1000 938.6 561.4 PA 36:1 2649.12 710.53 701.75 728.07 1912.28 1052.63 850.88 1894.74 PE 34:0 6675.44 429.82 2078.95 5201.75 1631.58 2289.47 5789.47 PE 35:2 4000 771.93 596.49 1087.72 1692.98 587.72 1526.32 2140.35 PG 33:0/PS32:0 5491.23 2403.51 438.6 2587.72 4315.79 1684.21 947.37 17211 PE 36:1 C18 22500 5561.4 6429.82 5622.81 11605 6271.93 9868.42 13333 PA 40:2 96.49 70.18 61.4 87.72 PE 38:4 12246 3035.09 4578.95 3605.26 11114 3429.82 5666.67 13070 PC 36:1 (C18) 4219.3 1035.09 1666.67 1254.39 2403.51 5078.95 PC 38:5 11061 3017.54 2500 0 5938.6 3526.32 5184.21 9728.07 PC 38:4 1307.02 228.07 412.28 447.37 912.28 412.28 745.61 859.65 PC 38:1 96.49 78.95 96.49 271.93 114.04 96.49 1447.37 PC 38:0 385.96 78.95 333.33 271.93 61.4 PG 38:0 3000 1535.09 1271.93 2307.02 868.42 2464.91 2894.74 PS 38:5 236.84 254.39 87.72 96.49 114.04 833.33 175.44 PC 39:0 798.25 166.67 78.95 2438.6 491.23 2149.12 3684.21 PC 40:5 175.44 307.02 350.88 561.4 166.67 PC 40:4 157.89 61.4 78.95 201.75 PG 40:1 2815.79 1666.67 1675.44 1657.89 2482.46 885.96 2956.14 1640.35 PE 44:12 596.49 315.79 763.16 PC 42:1 105.26 43.86 236.84 PC 44:12 517.54 78.95 87.72 324.56 114.04 412.28 210.53 PC 44:0 1526.32 105.26 70.18 87.72 342.11 298.25 438.6 701.75 MS_METABOLITE_DATA_END #METABOLITES METABOLITES_START metabolite_name m/z PE(16:0/0:0) 452.2916 PE(16:0/0:0)CO 480.313 PE(18:0/0:0) 480.3234 PE(0:0/22:6) 508.3189 PE(0:0/22:6)O 524.3137 PE(16:0/4:1(COH)) 536.3138 PE(16:0/4:1(COOH)) 552.3076 PE(16:0/7:2(CHO)(4O)) 590.3258 PE(16:0/8:2(COH)) 590.5292 PE(16:0/8:0(CHO)) 592.3764 PE(16:0/11:3(COOH)) 646.4504 PE(16:0/12:2(COH)) 646.4602 PE(16:0/12:1(COOH)(9OOH) 694.4667 PE(16:0/12:1(COOH)(9OH)Na 700.6204 PE(16:0/18:2(9Z,12Z)) 714.522 PE(16:0/14:3(COOH)(O)(OH)) 716.3594 PE(16:0/18:1(9Z)) 716.5381 PE(16:0/18:2(O)) 728.5577 PE(16:0/18:1(9O)) 730.5155 PE(16:0/18:2(9Z,12Z))Na 736.6284 PE(16:0/18:1(9Z))Na 738.5183 PE(16:0/18:2(9,12O)) 742.4795 PE(16:0/18:2(O)(OH)) 744.4963 PE(16:0/18:2(O))Na 750.6634 PE(16:0/18:2(O)(OOH)) 760.3938 PE(16:0/20:4) Na 760.5278 PE(16:0/18:2(OH)(OOH)) 762.5079 PE(16:0/22:6) 762.5209 PE(16:0/20:4(O)2) 766.416 PE(16:0/18:2(O)(OH))Na 766.4725 PE(16:0/18:2(O)(OOH))Na 782.4862 PE(16:0/22:6(OOH)2) 826.6912 PE(16:0/20:4(OOH)3) 834.625 PC(18:0/0:0) 522.37171 PC(18:0/8:2(COOH)(5O)) 690.44156 PC(18:0/11:3(COOH)) 716.67935 PC(18:0/11:2(CHO)(5,8O)) 728.46063 PC(18:0/11:3(COOH)(O)(OH)) 746.48296 PC(18:0/20:4(5Z,8Z,11Z,14Z)) 808.60077 PC(16:0/18:0(9,12OOH)) 824.51903 PC(18:0/20:4(O)(OH)) 838.66173 PC(18:0/20:4(OOH)2(O)) 886.84438 PC(18:0/20:4(OOH)2(OH)) 888.42553 LPE 16:0 452 LPC 16:0 480 PA 34:0 (C16) 674 PE 32:0 (C16) 691 PE 33:2 701 PE 34:1 717 PE 36:1 (C16) 745 PG 34:0 751 PE 38:6 762 PC 36:4 767 PC 36:1 (C16) 773 PG 36:0 779 PC 38:6 791 PG 38:1 805 LPE 18:0 480 LPC 18:0 509 PE 28:0 633 PA 32:1 647 PE 30:0 663 PA 34:2 673 PA 34:0 (C18) 677 PE 32:1 687 PE 32:0 (C18) 691 PA 36:1 703 PE 34:0 719 PE 35:2 729 PG 33:0/PS32:0 737 PE 36:1 C18 745 PA 40:2 757 PE 38:4 767 PC 36:1 (C18) 773 PC 38:5 791 PC 38:4 795 PC 38:1 801 PC 38:0 803 PG 38:0 807 PS 38:5 811 PC 39:0 817 PC 40:5 819 PC 40:4 822 PG 40:1 833 PE 44:12 835 PC 42:1 857 PC 44:12 863 PC 44:0 886 METABOLITES_END #END