#METABOLOMICS WORKBENCH nmakdissi_20241203_093051 DATATRACK_ID:5420 STUDY_ID:ST003615 ANALYSIS_ID:AN005940 PROJECT_ID:PR002234
VERSION                          	1
CREATED_ON                       	02-06-2025
#PROJECT
PR:PROJECT_TITLE                 	Kupffer cells control neonatal hepatic glucose metabolism via Igf1 signaling
PR:PROJECT_TYPE                  	lipidomics analysis
PR:PROJECT_SUMMARY               	During perinatal development, liver metabolism is tightly regulated to ensure
PR:PROJECT_SUMMARY               	energy supply for the newborn. Before birth, glycogen is stored in hepatocytes
PR:PROJECT_SUMMARY               	and later metabolized to glucose, meeting the energy demands of the neonate.
PR:PROJECT_SUMMARY               	Shortly after birth, lipogenesis begins, driven by the transcriptional
PR:PROJECT_SUMMARY               	activation of enzymes involved in fatty acid oxidation. These processes are
PR:PROJECT_SUMMARY               	thought to be largely regulated by systemic insulin and glucagon levels.
PR:PROJECT_SUMMARY               	However, the role of liver-derived local factors in neonatal hepatocyte
PR:PROJECT_SUMMARY               	metabolism remains unexplored. Kupffer cells (KCs), the liver’s resident
PR:PROJECT_SUMMARY               	macrophages, colonize the fetal liver early in embryogenesis and support liver
PR:PROJECT_SUMMARY               	metabolism in adulthood. Yet, whether KCs influence neonatal hepatocyte
PR:PROJECT_SUMMARY               	metabolism is unknown. Here, using conditional knockout mouse models targeting
PR:PROJECT_SUMMARY               	macrophages, we demonstrate that yolk sac-derived KCs play a critical role in
PR:PROJECT_SUMMARY               	hepatocyte glycogen storage and function by regulating the TCA cycle - a role
PR:PROJECT_SUMMARY               	that monocyte-derived KC-like cells cannot substitute. Newborn pups lacking KCs
PR:PROJECT_SUMMARY               	mobilize glycogen more rapidly, a process regulated by insulin-like growth
PR:PROJECT_SUMMARY               	factor 1 (Igf1) production. Our findings reveal that macrophages are a major
PR:PROJECT_SUMMARY               	source of Igf1 at birth and that local Igf1 production by KCs is essential for
PR:PROJECT_SUMMARY               	balanced hepatocyte metabolism.
PR:INSTITUTE                     	University of Bonn
PR:DEPARTMENT                    	Developmental Biology of the Immune System, The Life & Medical Sciences
PR:DEPARTMENT                    	Institute (LIMES)
PR:LABORATORY                    	Mass Lab
PR:LAST_NAME                     	Makdissi
PR:FIRST_NAME                    	Nikola
PR:ADDRESS                       	Carl Troll straße 31, Bonn
PR:EMAIL                         	nmakdissi@uni-bonn.de
PR:PHONE                         	02 28 / 73 - 6 2794
PR:DOI                           	http://dx.doi.org/10.21228/M8VJ9K
#STUDY
ST:STUDY_TITLE                   	Kupffer cells control neonatal hepatic glucose metabolism via Igf1 signaling -
ST:STUDY_TITLE                   	C13 glucose traced metabolites analysis of postnatal day 0 livers after
ST:STUDY_TITLE                   	macrophages depletion
ST:STUDY_TYPE                    	metabolites analysis of P0 livers from mice
ST:STUDY_SUMMARY                 	During perinatal development, liver metabolism is tightly regulated to ensure
ST:STUDY_SUMMARY                 	energy supply for the newborn. Before birth, glycogen is stored in hepatocytes
ST:STUDY_SUMMARY                 	and later metabolized to glucose, meeting the energy demands of the neonate.
ST:STUDY_SUMMARY                 	Shortly after birth, lipogenesis begins, driven by the transcriptional
ST:STUDY_SUMMARY                 	activation of enzymes involved in fatty acid oxidation. These processes are
ST:STUDY_SUMMARY                 	thought to be largely regulated by systemic insulin and glucagon levels.
ST:STUDY_SUMMARY                 	However, the role of liver-derived local factors in neonatal hepatocyte
ST:STUDY_SUMMARY                 	metabolism remains unexplored. Kupffer cells (KCs), the liver’s resident
ST:STUDY_SUMMARY                 	macrophages, colonize the fetal liver early in embryogenesis and support liver
ST:STUDY_SUMMARY                 	metabolism in adulthood. Yet, whether KCs influence neonatal hepatocyte
ST:STUDY_SUMMARY                 	metabolism is unknown. Here, using conditional knockout mouse models targeting
ST:STUDY_SUMMARY                 	macrophages, we demonstrate that yolk sac-derived KCs play a critical role in
ST:STUDY_SUMMARY                 	hepatocyte glycogen storage and function by regulating the TCA cycle - a role
ST:STUDY_SUMMARY                 	that monocyte-derived KC-like cells cannot substitute. n this experiment,
ST:STUDY_SUMMARY                 	C13-labeled glucose is administered to track glucose metabolism. The labeled
ST:STUDY_SUMMARY                 	glucose is metabolized, and its incorporation into downstream metabolites is
ST:STUDY_SUMMARY                 	analyzed using techniques such as mass spectrometry . This approach enables the
ST:STUDY_SUMMARY                 	identification and quantification of metabolic pathways involving glucose, such
ST:STUDY_SUMMARY                 	as glycolysis, gluconeogenesis, and the TCA cycle, providing insights into
ST:STUDY_SUMMARY                 	glucose utilization and related metabolic processes.
ST:INSTITUTE                     	University of Bonn
ST:DEPARTMENT                    	Developmental Biology of the Immune System, The Life & Medical Sciences
ST:DEPARTMENT                    	Institute (LIMES)
ST:LABORATORY                    	Mass Lab
ST:LAST_NAME                     	Makdissi
ST:FIRST_NAME                    	Nikola
ST:ADDRESS                       	Carl Troll straße 31
ST:EMAIL                         	nmakdissi@uni-bonn.de
ST:PHONE                         	02 28 / 73 - 6 2794
ST:SUBMIT_DATE                   	2024-12-03
#SUBJECT
SU:SUBJECT_TYPE                  	Mammal
SU:SUBJECT_SPECIES               	Mus musculus
SU:TAXONOMY_ID                   	10090
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Additional sample data
SUBJECT_SAMPLE_FACTORS           	-	24_KO1	Sample source:liver | Genotype:KO	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_24.cdf
SUBJECT_SAMPLE_FACTORS           	-	25_KO1	Sample source:liver | Genotype:KO	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_25.cdf
SUBJECT_SAMPLE_FACTORS           	-	26_KO1	Sample source:liver | Genotype:KO	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_26.cdf
SUBJECT_SAMPLE_FACTORS           	-	27_KO2	Sample source:liver | Genotype:KO	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_27.cdf
SUBJECT_SAMPLE_FACTORS           	-	28_KO2	Sample source:liver | Genotype:KO	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_28.cdf
SUBJECT_SAMPLE_FACTORS           	-	29_KO2	Sample source:liver | Genotype:KO	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_29.cdf
SUBJECT_SAMPLE_FACTORS           	-	50_KO3	Sample source:liver | Genotype:KO	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_50.cdf
SUBJECT_SAMPLE_FACTORS           	-	51_KO3	Sample source:liver | Genotype:KO	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_51.cdf
SUBJECT_SAMPLE_FACTORS           	-	52_KO3	Sample source:liver | Genotype:KO	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_52.cdf
SUBJECT_SAMPLE_FACTORS           	-	59_KO4	Sample source:liver | Genotype:KO	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_59.cdf
SUBJECT_SAMPLE_FACTORS           	-	60_KO4	Sample source:liver | Genotype:KO	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_60.cdf
SUBJECT_SAMPLE_FACTORS           	-	61_KO4	Sample source:liver | Genotype:KO	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_61.cdf
SUBJECT_SAMPLE_FACTORS           	-	18_WT1	Sample source:liver | Genotype:WT	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_18.cdf
SUBJECT_SAMPLE_FACTORS           	-	19_WT1	Sample source:liver | Genotype:WT	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_19.cdf
SUBJECT_SAMPLE_FACTORS           	-	20_WT1	Sample source:liver | Genotype:WT	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_20.cdf
SUBJECT_SAMPLE_FACTORS           	-	21_WT2	Sample source:liver | Genotype:WT	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_21.cdf
SUBJECT_SAMPLE_FACTORS           	-	22_WT2	Sample source:liver | Genotype:WT	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_22.cdf
SUBJECT_SAMPLE_FACTORS           	-	23_WT2	Sample source:liver | Genotype:WT	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_23.cdf
SUBJECT_SAMPLE_FACTORS           	-	53_WT3	Sample source:liver | Genotype:WT	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_53.cdf
SUBJECT_SAMPLE_FACTORS           	-	54_WT3	Sample source:liver | Genotype:WT	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_54.cdf
SUBJECT_SAMPLE_FACTORS           	-	55_WT3	Sample source:liver | Genotype:WT	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_55.cdf
SUBJECT_SAMPLE_FACTORS           	-	62_WT4	Sample source:liver | Genotype:WT	replicate=replicate1; RAW_FILE_NAME(row data file name)=fni_Nikola_62.cdf
SUBJECT_SAMPLE_FACTORS           	-	63_WT4	Sample source:liver | Genotype:WT	replicate=replicate2; RAW_FILE_NAME(row data file name)=fni_Nikola_63.cdf
SUBJECT_SAMPLE_FACTORS           	-	66_WT4	Sample source:liver | Genotype:WT	replicate=replicate3; RAW_FILE_NAME(row data file name)=fni_Nikola_66.cdf
#COLLECTION
CO:COLLECTION_SUMMARY            	The pups were sacrificed directly after birth by decapitation, and the liver was
CO:COLLECTION_SUMMARY            	collected in ice-cold culture buffer (Williams Medium supplemented with 10% FCS,
CO:COLLECTION_SUMMARY            	1 % L-glutamine, and 1% PenStrep)). Between 2-3 mg per replicate of the biggest
CO:COLLECTION_SUMMARY            	liver lobe were carefully dissected and placed in a 48-well plate on ice-cold
CO:COLLECTION_SUMMARY            	culture buffer. All the following steps were performed in a sterile hood. Each
CO:COLLECTION_SUMMARY            	piece was carefully placed on a porous cell culture insert (0.4 µm pore size),
CO:COLLECTION_SUMMARY            	which was then placed in a well of a 24-well plate containing 400 µL prewarmed
CO:COLLECTION_SUMMARY            	culture buffer. The plate was incubated for 2 h at 37°C, 5 % CO2. This step was
CO:COLLECTION_SUMMARY            	necessary to allow for the simultaneous genotyping of the mice to ensure that
CO:COLLECTION_SUMMARY            	only WTSpi and KOSpi were used in the tracing experiment, not HETSpi. Once the
CO:COLLECTION_SUMMARY            	genotypes were determined, the respective inlets were transferred to a 24-well
CO:COLLECTION_SUMMARY            	plate containing 400 µL pre-warmed tracer medium (Williams Medium w/o Glucose
CO:COLLECTION_SUMMARY            	supplemented with 10% FCS, 1 % L-glutamine, and 25 mM C13 labeled Glucose. The
CO:COLLECTION_SUMMARY            	samples were incubated for 4 h at 37°C, 5 % CO2. After incubation 100 µL of
CO:COLLECTION_SUMMARY            	medium was collected and snap-frozen. The liver tissue piece was briefly washed
CO:COLLECTION_SUMMARY            	with 0.9 % NaCl and then placed in 250 µL of -20°C cold Methanol. 250 µL of
CO:COLLECTION_SUMMARY            	pre-cooled MS-grade ddH2O containing 1 µg/mL D6 glutaric acid was added and the
CO:COLLECTION_SUMMARY            	tissue homogenized. The homogenate was transferred to a fresh tube and stored at
CO:COLLECTION_SUMMARY            	-80°C until further processing.
CO:SAMPLE_TYPE                   	Liver
#TREATMENT
TR:TREATMENT_SUMMARY             	No treatment.
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	Metabolites were derivatized using a Gerstel MPS with 15 μL of 2% (w/v)
SP:SAMPLEPREP_SUMMARY            	methoxyamine hydrochloride (Thermo Scientific) in pyridine and 15 μl
SP:SAMPLEPREP_SUMMARY            	N-tertbutyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1%
SP:SAMPLEPREP_SUMMARY            	tert-butyldimethylchlorosilane (Regis Technologies).
#CHROMATOGRAPHY
CH:CHROMATOGRAPHY_SUMMARY        	Derivatives were measured by GC/MS with a 30 m DB-35MS + 5 m Duraguard capillary
CH:CHROMATOGRAPHY_SUMMARY        	column (0.25 mm inner diameter, 0.25 µm film thickness) equiped in an Agilent
CH:CHROMATOGRAPHY_SUMMARY        	7890B gas chromatograph (GC) connected to an Agilent 5977A mass spectrometer
CH:CHROMATOGRAPHY_SUMMARY        	(MS). The GC oven temperature was held at 80°C for 6 min and subsequently
CH:CHROMATOGRAPHY_SUMMARY        	increased at 6°C per min until reaching 280°C where it was held for 10 min.
CH:INSTRUMENT_NAME               	Agilent 7890B
CH:COLUMN_NAME                   	Agilent DB5-MS (30m x 0.25mm, 0.25um)
CH:COLUMN_TEMPERATURE            	The oven temperature was initially set at 80°C for 6 minutes, ramped at 6°C
CH:COLUMN_TEMPERATURE            	per minute to 280°C, and held at 280°C for 10 minutes
CH:FLOW_GRADIENT                 	NA
CH:FLOW_RATE                     	1 mL/min
CH:SOLVENT_A                     	NA
CH:SOLVENT_B                     	NA
CH:CHROMATOGRAPHY_TYPE           	GC
#ANALYSIS
AN:ANALYSIS_TYPE                 	MS
#MS
MS:INSTRUMENT_NAME               	Agilent 5977A
MS:INSTRUMENT_TYPE               	Single quadrupole
MS:MS_TYPE                       	EI
MS:MS_COMMENTS                   	The quadropole was held at 150°C. The MS source operated under electron impact
MS:MS_COMMENTS                   	ionization mode at 70 eV and was held at 230°C. Full scan (70–800 m/z, 3.9
MS:MS_COMMENTS                   	scans per second) as well as targeted ion chromatogram measurements were
MS:MS_COMMENTS                   	conducted for pyruvate (174, 175, 176, 177, 178, 179; 10 scans per second),
MS:MS_COMMENTS                   	lactate (261, 262, 263, 264, 265, 266, 267; 10 scans per second), alanine (260,
MS:MS_COMMENTS                   	261, 262, 263, 264, 265; 10 scans per second), citrate (591, 592, 593, 594, 595,
MS:MS_COMMENTS                   	596, 597, 598, 599, 600; 10 scans per second), malate (419, 420, 421, 422, 423,
MS:MS_COMMENTS                   	424, 425, 426; 10 scans per second) and aspartate (481, 482, 483, 484, 485, 486,
MS:MS_COMMENTS                   	487; 10 scans per second) All chromatograms were analyzed with
MS:MS_COMMENTS                   	MetaboliteDetector [REF: Hiller K, Hangebrauk J, Jäger C, Spura J, Schreiber K,
MS:MS_COMMENTS                   	Schomburg D. MetaboliteDetector: comprehensive analysis tool for targeted and
MS:MS_COMMENTS                   	nontargeted GC/MS based metabolome analysis. Anal Chem. 2009 May
MS:MS_COMMENTS                   	1;81(9):3429-39. doi: 10.1021/ac802689c. PMID: 19358599.].
MS:ION_MODE                      	POSITIVE
#MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS         	Signal intensity normalized by IS for the metabolite signal/c13 carbon enrichment %
MS_METABOLITE_DATA_START
Samples	24_KO1	25_KO1	26_KO1	27_KO2	28_KO2	29_KO2	50_KO3	51_KO3	52_KO3	59_KO4	60_KO4	61_KO4	18_WT1	19_WT1	20_WT1	21_WT2	22_WT2	23_WT2	53_WT3	54_WT3	55_WT3	62_WT4	63_WT4	66_WT4
Factors	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:KO	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	Sample source:liver | Genotype:WT	
Alanine_total	0.0248	0.0240	0.0182	0.0216	0.0225	0.0193	0.0186	0.0303	0.0179	0.0204	0.0243	0.0234	0.0180	0.0268	0.0179	0.0211	0.0281	0.0171	0.0228	0.0214	0.0155	0.0202	0.0131	0.0217
Aspartate_total	0.8703	0.7100	1.1252	1.1617	1.4820	1.2913	1.4397	0.9229	1.3318	0.8159	1.2926	0.7465	0.8080	1.6321	0.8025	0.7877	0.6935	0.9131	1.9359	1.4754	0.8529	0.9950	1.5904	1.4806
Citrate_total	0.5080	0.5561	0.5279	0.5403	0.4631	0.4986	0.5057	0.5116	0.5144	0.5267	0.5206	0.5315	0.5721	0.4954	0.4309	0.5655	0.4987	0.5165	0.5655	0.4898	0.5106	0.5387	0.5461	0.4877
Lactate_total	12.0704	10.4378	10.6633	10.8889	10.7813	13.2998	14.3095	13.8050	14.2657	9.2289	10.4637	7.0253	6.6553	4.7383	6.9239	8.7587	4.0443	7.5498	6.0467	4.1825	4.6167	5.6722	4.1919	4.6546
Malate_total	1.6926	0.8430	0.9229	1.5725	0.6469	1.5015	1.1382	0.7251	1.2416	1.8961	0.8587	0.9445	1.2223	0.9909	0.9249	0.8223	0.9401	1.4691	0.9791	1.4042	1.5566	1.4787	1.2605	1.1017
Pyruvate_total	0.9460	1.0321	1.3484	0.9923	0.9412	1.0171	0.8821	0.8703	0.8131	0.9350	0.9909	0.9236	0.1335	0.1545	0.1796	0.3638	0.1365	0.2188	0.2487	0.2862	0.1144	0.1444	0.1167	0.1475
%traced_Alanine_260 (M0)	0.5080	0.4923	0.5091	0.4712	0.5100	0.5240	0.5313	0.5067	0.5429	0.5253	0.5306	0.5009	0.4698	0.4628	0.5150	0.4958	0.5138	0.5033	0.5103	0.5388	0.4477	0.5163	0.5379	0.5240
%traced_Alanine_261 (M1)	0.0462	0.0409	0.0509	0.0519	0.0352	0.0243	0.0170	0.0237	0.0350	0.0872	0.0123	0.0752	0.0498	0.0434	0.0479	0.0334	0.0299	0.0370	0.0527	0.0308	0.0280	0.0301	0.0118	0.0089
%traced_Alanine_262 (M2)	0.0757	0.0761	0.0730	0.0344	0.0644	0.0538	0.0031	0.0582	0.0018	0.0371	0.0810	0.0775	0.0824	0.0998	0.0281	0.0744	0.0711	0.0591	0.0641	0.0219	0.0630	0.0597	0.0293	0.0725
%traced_Alanine_263 (M3)	0.4031	0.3939	0.4002	0.4097	0.3925	0.3996	0.3803	0.3936	0.3716	0.4158	0.4017	0.3654	0.3992	0.4219	0.4154	0.4022	0.3939	0.3957	0.3923	0.3885	0.3919	0.3973	0.4235	0.3881
%traced_Aspartate_418 (M0)	0.5880	0.6027	0.5835	0.5992	0.6313	0.5958	0.6364	0.6285	0.6173	0.6479	0.5965	0.6423	0.6478	0.6080	0.6538	0.6345	0.5889	0.5901	0.6576	0.6091	0.6325	0.6272	0.6496	0.5978
%traced_Aspartate_419 (M1)	0.0314	0.0161	0.0651	0.0182	0.0199	0.0547	0.0872	0.0818	0.0635	0.0900	0.0742	0.0708	0.0995	0.0402	0.0801	0.0480	0.0674	0.0575	0.0338	0.0704	0.0298	0.0830	0.0755	0.0862
%traced_Aspartate_420 (M2)	0.2576	0.2353	0.2119	0.1924	0.2062	0.2003	0.2341	0.1825	0.2093	0.2010	0.2089	0.2329	0.2024	0.2068	0.2365	0.2307	0.2021	0.2144	0.2483	0.1837	0.2102	0.2246	0.1540	0.2148
%traced_Aspartate_421 (M3)	0.1343	0.0936	0.0761	0.1077	0.0919	0.1167	0.1387	0.0924	0.1273	0.1155	0.1064	0.1168	0.0537	0.0763	0.1191	0.0775	0.0938	0.0871	0.1535	0.1184	0.0950	0.1249	0.1166	0.1106
%traced_Aspartate_422 (M4)	0.0080	0.0092	0.0077	0.0175	0.0111	0.0082	0.0121	0.0195	0.0111	0.0063	0.0066	0.0143	0.0220	0.0077	0.0084	0.0108	0.0086	0.0070	0.0062	0.0040	0.0072	0.0081	0.0059	0.0075
%traced_Citrate_591 (M0)	0.6707	0.7258	0.6621	0.7290	0.6931	0.6775	0.7501	0.7442	0.7111	0.7258	0.6931	0.7069	0.6581	0.6669	0.6890	0.6501	0.6442	0.6111	0.6538	0.6581	0.6333	0.5290	0.5775	0.5581
%traced_Citrate_592 (M1)	0.0102	0.0408	0.0211	0.0134	0.0127	0.0120	0.0286	0.0301	0.0400	0.0408	0.0127	0.0379	0.0109	0.0379	0.0126	0.0286	0.0301	0.0400	0.0364	0.0393	0.0623	0.0336	0.0120	0.0109
%traced_Citrate_593 (M2)	0.1606	0.1722	0.2223	0.2003	0.2179	0.2537	0.2858	0.2675	0.2801	0.1722	0.2179	0.2145	0.2964	0.2545	0.2562	0.2858	0.2675	0.2801	0.2869	0.2964	0.3008	0.3003	0.2537	0.2964
%traced_Citrate_594 (M3)	0.0555	0.0138	0.0411	0.0415	0.0200	0.0197	0.0585	0.0284	0.0196	0.0138	0.0200	0.0162	0.0844	0.0618	0.0880	0.0585	0.0284	0.0196	0.1104	0.0844	0.1232	0.0915	0.0972	0.0844
%traced_Citrate_595 (M4)	0.0126	0.0198	0.0333	0.0294	0.0414	0.0209	0.0764	0.0810	0.0867	0.0978	0.0914	0.0904	0.0397	0.0504	0.0409	0.0764	0.0810	0.0367	0.0292	0.0397	0.0686	0.0937	0.0209	0.0397
%traced_Citrate_596 (M5)	0.0230	0.0780	0.0137	0.0856	0.0172	0.0676	0.0308	0.0294	0.0211	0.0780	0.0172	0.0215	0.0120	0.0215	0.0388	0.0308	0.0294	0.0211	0.0703	0.0120	0.0250	0.0856	0.0676	0.0120
%traced_Citrate_597 (M6)	0.0126	0.0097	0.0161	0.0208	0.0013	0.0045	0.0020	0.0398	0.0853	0.0971	0.0013	0.0320	0.0009	0.0320	0.0313	0.0020	0.0398	0.0853	0.0016	0.0009	0.0118	0.0208	0.0452	0.0009
%traced_lactate_261 (M0)	0.3172	0.3173	0.3149	0.3296	0.3665	0.3689	0.2920	0.3195	0.3445	0.3914	0.3425	0.3591	0.4499	0.3999	0.4182	0.3774	0.4079	0.3478	0.4171	0.4352	0.4824	0.4199	0.4021	0.3948
%traced_lactate_262 (M1)	0.0525	0.0491	0.0551	0.0539	0.0516	0.0589	0.0337	0.0334	0.0378	0.0359	0.0362	0.0457	0.0386	0.0402	0.0314	0.0553	0.0543	0.0517	0.0466	0.0450	0.0463	0.0320	0.0406	0.0391
%traced_lactate_263 (M2)	0.0801	0.0850	0.0322	0.0854	0.0896	0.0839	0.0763	0.0785	0.0803	0.0731	0.0816	0.0849	0.0728	0.0754	0.0644	0.0921	0.0869	0.0893	0.0881	0.0807	0.0690	0.0685	0.0849	0.0784
%traced_lactate_264 (M3)	0.5531	0.5519	0.5803	0.5340	0.4956	0.4908	0.5999	0.5693	0.5403	0.5022	0.5421	0.5123	0.4419	0.4873	0.4893	0.4775	0.4538	0.5139	0.4511	0.4428	0.4051	0.4819	0.4752	0.4904
%traced_malate_419 (M0)	0.6779	0.5957	0.6477	0.6110	0.5879	0.5788	0.5734	0.6297	0.6534	0.6177	0.6154	0.6353	0.6454	0.6973	0.6873	0.6779	0.5957	0.6477	0.5579	0.6036	0.5816	0.5960	0.6097	0.5842
%traced_malate_420 (M1)	0.0725	0.0825	0.0855	0.0332	0.1144	0.0626	0.0640	0.0538	0.0631	0.0607	0.0613	0.0621	0.0847	0.0750	0.0610	0.0725	0.0825	0.0855	0.1095	0.1045	0.0954	0.0049	0.0505	0.0624
%traced_malate_421 (M2)	0.1264	0.1506	0.1341	0.1943	0.1546	0.1353	0.2277	0.2376	0.1591	0.1845	0.2045	0.1697	0.1484	0.1553	0.1457	0.1264	0.1506	0.1341	0.1482	0.1194	0.2217	0.2541	0.2165	0.2190
%traced_malate_422 (M3)	0.0979	0.1101	0.1012	0.1536	0.1549	0.1551	0.1250	0.0804	0.1044	0.1095	0.1022	0.1080	0.0880	0.0963	0.0872	0.0979	0.1101	0.1012	0.1360	0.1400	0.1947	0.1017	0.1002	0.1207
%traced_malate_423 (M4)	0.0221	0.0375	0.0303	0.0164	0.0359	0.0676	0.0177	0.0013	0.0162	0.0206	0.0176	0.0171	0.0298	0.0278	0.0221	0.0221	0.0375	0.0303	0.0349	0.0394	0.0554	0.0259	0.0214	0.0166
%traced_Pyruvate_174 (M0)	0.6398	0.5866	0.6261	0.5891	0.5685	0.6227	0.6233	0.6665	0.6505	0.6521	0.6886	0.6460	0.8782	0.8484	0.8492	0.8037	0.8398	0.8083	0.8049	0.7297	0.7070	0.7453	0.7538	0.7709
%traced_Pyruvate_175 (M1)	0.0391	0.0440	0.0955	0.0461	0.0425	0.0456	0.0248	0.0277	0.0306	0.0307	0.0258	0.0377	0.0887	0.0820	0.0837	0.0821	0.0943	0.0999	0.1048	0.1264	0.1293	0.1388	0.1356	0.1373
%traced_Pyruvate_176 (M2)	0.0528	0.0657	0.0259	0.0656	0.0661	0.0593	0.0491	0.0496	0.0521	0.0492	0.0470	0.0592	0.0343	0.0484	0.0371	0.0360	0.0434	0.0334	0.0209	0.0467	0.0470	0.0562	0.0558	0.0488
%traced_Pyruvate_177 (M3)	0.2710	0.3060	0.3082	0.3007	0.3244	0.2739	0.3046	0.2579	0.2689	0.2683	0.2412	0.2581	0.1711	0.1723	0.1773	0.1566	0.1551	0.1558	0.1745	0.2094	0.2383	0.1607	0.1558	0.1439
MS_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name	pubchem_id	inchi_key	kegg_id	other_id	other_id_type	ri	ri_type	moverz_quant	
Alanine_total									
Aspartate_total									
Citrate_total									
Lactate_total									
Malate_total									
Pyruvate_total									
%traced_Alanine_260 (M0)								260	
%traced_Alanine_261 (M1)								261	
%traced_Alanine_262 (M2)								262	
%traced_Alanine_263 (M3)								263	
%traced_Aspartate_418 (M0)								418	
%traced_Aspartate_419 (M1)								419	
%traced_Aspartate_420 (M2)								420	
%traced_Aspartate_421 (M3)								421	
%traced_Aspartate_422 (M4)								422	
%traced_Citrate_591 (M0)								591	
%traced_Citrate_592 (M1)								592	
%traced_Citrate_593 (M2)								593	
%traced_Citrate_594 (M3)								594	
%traced_Citrate_595 (M4)								595	
%traced_Citrate_596 (M5)								596	
%traced_Citrate_597 (M6)								597	
%traced_lactate_261 (M0)								261	
%traced_lactate_262 (M1)								262	
%traced_lactate_263 (M2)								263	
%traced_lactate_264 (M3)								264	
%traced_malate_419 (M0)								419	
%traced_malate_420 (M1)								420	
%traced_malate_421 (M2)								421	
%traced_malate_422 (M3)								422	
%traced_malate_423 (M4)								423	
%traced_Pyruvate_174 (M0)								174	
%traced_Pyruvate_175 (M1)								175	
%traced_Pyruvate_176 (M2)								176	
%traced_Pyruvate_177 (M3)								177	
METABOLITES_END
#END