#METABOLOMICS WORKBENCH huaqisu_20250225_200116 DATATRACK_ID:5677 STUDY_ID:ST003769 ANALYSIS_ID:AN006187 PROJECT_ID:PR002351
VERSION             	1
CREATED_ON             	March 3, 2025, 10:11 pm
#PROJECT
PR:PROJECT_TITLE                 	Characterization of brain‐derived extracellular vesicle lipids in Alzheimer's
PR:PROJECT_TITLE                 	disease
PR:PROJECT_TYPE                  	MS lipidomic quantitative analysis
PR:PROJECT_SUMMARY               	Lipid dyshomeostasis is associated with the most common form of dementia,
PR:PROJECT_SUMMARY               	Alzheimer's disease (AD). Substantial progress has been made in identifying
PR:PROJECT_SUMMARY               	positron emission tomography and cerebrospinal fluid biomarkers for AD, but they
PR:PROJECT_SUMMARY               	have limited use as front‐line diagnostic tools. Extracellular vesicles (EVs)
PR:PROJECT_SUMMARY               	are released by all cells and contain a subset of their parental cell
PR:PROJECT_SUMMARY               	composition, including lipids. EVs are released from the brain into the
PR:PROJECT_SUMMARY               	periphery, providing a potential source of tissue and disease specific lipid
PR:PROJECT_SUMMARY               	biomarkers. However, the EV lipidome of the central nervous system is currently
PR:PROJECT_SUMMARY               	unknown and the potential of brain‐derived EVs (BDEVs) to inform on lipid
PR:PROJECT_SUMMARY               	dyshomeostasis in AD remains unclear. The aim of this study was to reveal the
PR:PROJECT_SUMMARY               	lipid composition of BDEVs in human frontal cortex, and to determine whether
PR:PROJECT_SUMMARY               	BDEVs have an altered lipid profile in AD. Using semi‐quantitative mass
PR:PROJECT_SUMMARY               	spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17
PR:PROJECT_SUMMARY               	lipid classes and 692 lipid molecules. BDEVs were enriched in
PR:PROJECT_SUMMARY               	glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further
PR:PROJECT_SUMMARY               	report that BDEVs are enriched in ether‐containing PS lipids, a finding that
PR:PROJECT_SUMMARY               	further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal
PR:PROJECT_SUMMARY               	cortex offered improved detection of dysregulated lipids in AD over global lipid
PR:PROJECT_SUMMARY               	profiling of this brain region. AD BDEVs had significantly altered
PR:PROJECT_SUMMARY               	glycerophospholipid and sphingolipid levels, specifically increased plasmalogen
PR:PROJECT_SUMMARY               	glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing
PR:PROJECT_SUMMARY               	lipids, and altered amide‐linked acyl chain content in sphingomyelin and
PR:PROJECT_SUMMARY               	ceramide lipids relative to CTL. The most prominent alteration was a two‐fold
PR:PROJECT_SUMMARY               	decrease in lipid species containing anti‐inflammatory/pro‐resolving
PR:PROJECT_SUMMARY               	docosahexaenoic acid. The in‐depth lipidome analysis provided in this study
PR:PROJECT_SUMMARY               	highlights the advantage of EVs over more complex tissues for improved detection
PR:PROJECT_SUMMARY               	of dysregulated lipids that may serve as potential biomarkers in the periphery.
PR:INSTITUTE                     	The University of Melbourne
PR:DEPARTMENT                    	The Florey Institute of Neuroscience and Mental Health
PR:LAST_NAME                     	Su
PR:FIRST_NAME                    	Huaqi
PR:ADDRESS                       	30 Royal Parade, Melbourne, VIC, 3150, Australia
PR:EMAIL                         	huaqi.su@unimelb.edu.au
PR:PHONE                         	+61416373787
#STUDY
ST:STUDY_TITLE                   	Characterization of brain‐derived extracellular vesicle lipids in Alzheimer's
ST:STUDY_TITLE                   	disease
ST:STUDY_SUMMARY                 	Lipid dyshomeostasis is associated with the most common form of dementia,
ST:STUDY_SUMMARY                 	Alzheimer's disease (AD). Substantial progress has been made in identifying
ST:STUDY_SUMMARY                 	positron emission tomography and cerebrospinal fluid biomarkers for AD, but they
ST:STUDY_SUMMARY                 	have limited use as front‐line diagnostic tools. Extracellular vesicles (EVs)
ST:STUDY_SUMMARY                 	are released by all cells and contain a subset of their parental cell
ST:STUDY_SUMMARY                 	composition, including lipids. EVs are released from the brain into the
ST:STUDY_SUMMARY                 	periphery, providing a potential source of tissue and disease specific lipid
ST:STUDY_SUMMARY                 	biomarkers. However, the EV lipidome of the central nervous system is currently
ST:STUDY_SUMMARY                 	unknown and the potential of brain‐derived EVs (BDEVs) to inform on lipid
ST:STUDY_SUMMARY                 	dyshomeostasis in AD remains unclear. The aim of this study was to reveal the
ST:STUDY_SUMMARY                 	lipid composition of BDEVs in human frontal cortex, and to determine whether
ST:STUDY_SUMMARY                 	BDEVs have an altered lipid profile in AD. Using semi‐quantitative mass
ST:STUDY_SUMMARY                 	spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17
ST:STUDY_SUMMARY                 	lipid classes and 692 lipid molecules. BDEVs were enriched in
ST:STUDY_SUMMARY                 	glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further
ST:STUDY_SUMMARY                 	report that BDEVs are enriched in ether‐containing PS lipids, a finding that
ST:STUDY_SUMMARY                 	further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal
ST:STUDY_SUMMARY                 	cortex offered improved detection of dysregulated lipids in AD over global lipid
ST:STUDY_SUMMARY                 	profiling of this brain region. AD BDEVs had significantly altered
ST:STUDY_SUMMARY                 	glycerophospholipid and sphingolipid levels, specifically increased plasmalogen
ST:STUDY_SUMMARY                 	glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing
ST:STUDY_SUMMARY                 	lipids, and altered amide‐linked acyl chain content in sphingomyelin and
ST:STUDY_SUMMARY                 	ceramide lipids relative to CTL. The most prominent alteration was a two‐fold
ST:STUDY_SUMMARY                 	decrease in lipid species containing anti‐inflammatory/pro‐resolving
ST:STUDY_SUMMARY                 	docosahexaenoic acid. The in‐depth lipidome analysis provided in this study
ST:STUDY_SUMMARY                 	highlights the advantage of EVs over more complex tissues for improved detection
ST:STUDY_SUMMARY                 	of dysregulated lipids that may serve as potential biomarkers in the periphery.
ST:INSTITUTE                     	The University of Melbourne
ST:DEPARTMENT                    	The Florey Institute of Neuroscience and Mental Health
ST:LAST_NAME                     	Su
ST:FIRST_NAME                    	Huaqi
ST:ADDRESS                       	30 Royal Parade, Melbourne, VIC, 3150, Australia
ST:EMAIL                         	huaqi.su@unimelb.edu.au
ST:PHONE                         	+61416373787
#SUBJECT
SU:SUBJECT_TYPE                  	Human
SU:SUBJECT_SPECIES               	Homo sapiens
SU:TAXONOMY_ID                   	9606
SU:GENDER                        	Male
#SUBJECT_SAMPLE_FACTORS:         	SUBJECT(optional)[tab]SAMPLE[tab]FACTORS(NAME:VALUE pairs separated by |)[tab]Raw file names and additional sample data
SUBJECT_SAMPLE_FACTORS           	051071CTL	051071CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL01BB1T1-051071--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	06379AD	06379AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD01BB1T1-06379--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	06972CTL	06972CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL02BB1T1-06972--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07022CTL	07022CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL03BB1T1-07022--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07284CTL	07284CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL04BB1T1-07284--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07635CTL	07635CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL05BB1T1-07635--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08007AD	08007AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD02BB1T1-08007--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08312AD	08312AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD03BB2T1-08312--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08329AD	08329AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD04BB1T1-08329--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09006AD	09006AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD05BB1T1-09006--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09090AD	09090AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD06BB1T1-09090--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09214AD	09214AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD07BB1T1-09214--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V11052CTL	V11052CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL06BB1T1-V11052--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V13052CTL	V13052CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL07BB1T1-V13052--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V14035CTL	V14035CTL_T	Sample source:Brain | Diagnosis:CTL	RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL08BB1T1-V14035--CTL__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V15016AD	V15016AD_T	Sample source:Brain | Diagnosis:AD	RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD08BB1T1-V15016--AD__T_12__5X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	051071CTL	051071CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL01CB1T1-051071--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	06379AD	06379AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD01CB1T1-06379--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	06972CTL	06972CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL02CB1T1-06972--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07022CTL	07022CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL03CB1T1-07022--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07284CTL	07284CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL04CB1T1-07284--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	07635CTL	07635CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL05CB1T1-07635--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08007AD	08007AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD02CB1T1-08007--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08312AD	08312AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD03CB2T1-08312--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	08329AD	08329AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD04CB1T1-08329--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09006AD	09006AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD05CB1T1-09006--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09090AD	09090AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD06CB1T1-09090--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	09214AD	09214AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD07CB1T1-09214--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V11052CTL	V11052CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL06CB1T1-V11052--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V13052CTL	V13052CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL07CB1T1-V13052--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V14035CTL	V14035CTL_F2	Sample source:BDEV | Diagnosis:CTL	RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=CTL08CB1T1-V14035--CTL__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
SUBJECT_SAMPLE_FACTORS           	V15016AD	V15016AD_F2	Sample source:BDEV | Diagnosis:AD	RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_POS_1.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_POS_2.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_POS_3.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_1.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_2.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_NonDer_NEG_3.RAW; RAW_FILE_NAME=AD08CB1T1-V15016--AD__F2_6__25X_MS_KS_190704_Der_POS_1.RAW
#COLLECTION
CO:COLLECTION_SUMMARY            	Fresh frozen human post-mortem frontal cortex tissues of n = 8 AD male subjects
CO:COLLECTION_SUMMARY            	(mean age 74.5 ± SD 7.0 years) and n = 8 gender and age-matched CTL subjects
CO:COLLECTION_SUMMARY            	(mean age 73.5 ± SD 5.9 years) with no evidence of dementia, stored at
CO:COLLECTION_SUMMARY            	−80◦C, were obtained from the Victoria Brain Bank. The average post-mortem
CO:COLLECTION_SUMMARY            	delay before tissue collection was 23.3 ± 17.4 h for AD and 42 ± 16.3 h for
CO:COLLECTION_SUMMARY            	CTL. Frozen frontal cortex tissues (approximately 2 g) were sliced lengthways on
CO:COLLECTION_SUMMARY            	ice to generate 1–2 cm long, 2–3 mm wide tissue sections. Approximately 30
CO:COLLECTION_SUMMARY            	mg tissue pieces from each sample (“Brain Total”) were collected, weighed
CO:COLLECTION_SUMMARY            	and placed in 19x volume of tissue weight of Dulbecco’s phosphate buffered
CO:COLLECTION_SUMMARY            	saline (DPBS, Thermo Fisher Scientific) solution containing 1x PhosSTOP
CO:COLLECTION_SUMMARY            	phosphatase inhibitor (Sigma Aldrich) / cOmplete protease inhibitor (including
CO:COLLECTION_SUMMARY            	EDTA, Sigma Aldrich) for immunoblot analysis. The remaining cut tissue sections
CO:COLLECTION_SUMMARY            	were weighed and incubated with 50 U/ml collagenase type 3 (#CLS-3,
CO:COLLECTION_SUMMARY            	CAT#LS004182, Worthington) digestion buffer (at ratio of 8μl / mg tissue) in a
CO:COLLECTION_SUMMARY            	shaking water bath (25◦C, a total of 20 min). During incubation, tissue slices
CO:COLLECTION_SUMMARY            	were inverted twice at the 10-min time point, gently pipetted up and down twice
CO:COLLECTION_SUMMARY            	at the 15-min time point and then allowed incubation for a further 5 min,
CO:COLLECTION_SUMMARY            	followed by the addition of ice-cold 10x inhibition buffer, which was made of
CO:COLLECTION_SUMMARY            	10x phosphatase inhibitor and 10x protease inhibitor in DPBS. The final
CO:COLLECTION_SUMMARY            	concentration of inhibition buffer in solution was 1x. The dissociated tissue in
CO:COLLECTION_SUMMARY            	solution was subjected to a series of centrifugations, including a 300 × g,
CO:COLLECTION_SUMMARY            	4◦C for 5 min, a 2000 × g, 4◦C for 10 min and a 10,000 × g, 4◦C for 30
CO:COLLECTION_SUMMARY            	min. Representative 300 × g pellets were collected (‘Brain+C’ for
CO:COLLECTION_SUMMARY            	collagenase treatment) and either placed in 19× volume of tissue weight of DPBS
CO:COLLECTION_SUMMARY            	with 1× phosphatase inhibitor / protease inhibitor solution for protein
CO:COLLECTION_SUMMARY            	quantification and immunoblot analysis or combined with 19× volume of tissue
CO:COLLECTION_SUMMARY            	weight of ice-cold 60% methanol (LCMS grade, EMD Millipore Corporation)
CO:COLLECTION_SUMMARY            	containing 0.01% (w/v) butylated hydroxytoluene (BHT, Sigma Aldrich) for lipid
CO:COLLECTION_SUMMARY            	extraction. The 10,000 × g supernatant was loaded on top of the triple sucrose
CO:COLLECTION_SUMMARY            	density gradient (0.6 M, 1.3M, 2.5 M) as indicated in the method (Vella et al.,
CO:COLLECTION_SUMMARY            	2017) in ultra-clear SW40Ti tubes (Beckman Coulter). The sucrose gradients were
CO:COLLECTION_SUMMARY            	centrifuged at 200,000 x g avg at 4◦C for 173 min using a SW40Ti rotor
CO:COLLECTION_SUMMARY            	(Beckman Coulter). After the spin, the three fractions (F1, F2 and F3, 1.2ml
CO:COLLECTION_SUMMARY            	each) were sequentially collected and refractive index wasmeasured. Each
CO:COLLECTION_SUMMARY            	fraction was subjected to a wash spin in ice-cold DPBS at 128,000 × g avg, at
CO:COLLECTION_SUMMARY            	4◦C for 80 min using a F37L-8 × 100 rotor (Thermo Fisher Scientific). The
CO:COLLECTION_SUMMARY            	pelleted EVs were resuspended in 150 μl ice-cold DPBS with 1x phosphatase
CO:COLLECTION_SUMMARY            	inhibitor / protease inhibitor solution.
CO:COLLECTION_PROTOCOL_FILENAME  	Su_et_al_2021.pdf
CO:SAMPLE_TYPE                   	brain frontal cortex, brain derived extracellular vesicles
#TREATMENT
TR:TREATMENT_SUMMARY             	There is no treatment in this study.
#SAMPLEPREP
SP:SAMPLEPREP_SUMMARY            	Fresh frozen human post-mortem frontal cortex tissues of n = 8 AD male subjects
SP:SAMPLEPREP_SUMMARY            	(mean age 74.5 ± SD 7.0 years) and n = 8 gender and age-matched CTL subjects
SP:SAMPLEPREP_SUMMARY            	(mean age 73.5 ± SD 5.9 years) with no evidence of dementia, stored at
SP:SAMPLEPREP_SUMMARY            	−80◦C, were obtained from the Victoria Brain Bank. The average post-mortem
SP:SAMPLEPREP_SUMMARY            	delay before tissue collection was 23.3 ± 17.4 h for AD and 42 ± 16.3 h for
SP:SAMPLEPREP_SUMMARY            	CTL. Frozen frontal cortex tissues (approximately 2 g) were sliced lengthways on
SP:SAMPLEPREP_SUMMARY            	ice to generate 1–2 cm long, 2–3 mm wide tissue sections. Approximately 30
SP:SAMPLEPREP_SUMMARY            	mg tissue pieces from each sample (“Brain Total”) were collected, weighed
SP:SAMPLEPREP_SUMMARY            	and placed in 19x volume of tissue weight of Dulbecco’s phosphate buffered
SP:SAMPLEPREP_SUMMARY            	saline (DPBS, Thermo Fisher Scientific) solution containing 1x PhosSTOP
SP:SAMPLEPREP_SUMMARY            	phosphatase inhibitor (Sigma Aldrich) / cOmplete protease inhibitor (including
SP:SAMPLEPREP_SUMMARY            	EDTA, Sigma Aldrich) for immunoblot analysis. The remaining cut tissue sections
SP:SAMPLEPREP_SUMMARY            	were weighed and incubated with 50 U/ml collagenase type 3 (#CLS-3,
SP:SAMPLEPREP_SUMMARY            	CAT#LS004182, Worthington) digestion buffer (at ratio of 8μl / mg tissue) in a
SP:SAMPLEPREP_SUMMARY            	shaking water bath (25◦C, a total of 20 min). During incubation, tissue slices
SP:SAMPLEPREP_SUMMARY            	were inverted twice at the 10-min time point, gently pipetted up and down twice
SP:SAMPLEPREP_SUMMARY            	at the 15-min time point and then allowed incubation for a further 5 min,
SP:SAMPLEPREP_SUMMARY            	followed by the addition of ice-cold 10x inhibition buffer, which was made of
SP:SAMPLEPREP_SUMMARY            	10x phosphatase inhibitor and 10x protease inhibitor in DPBS. The final
SP:SAMPLEPREP_SUMMARY            	concentration of inhibition buffer in solution was 1x. The dissociated tissue in
SP:SAMPLEPREP_SUMMARY            	solution was subjected to a series of centrifugations, including a 300 × g,
SP:SAMPLEPREP_SUMMARY            	4◦C for 5 min, a 2000 × g, 4◦C for 10 min and a 10,000 × g, 4◦C for 30
SP:SAMPLEPREP_SUMMARY            	min. Representative 300 × g pellets were collected (‘Brain+C’ for
SP:SAMPLEPREP_SUMMARY            	collagenase treatment) and either placed in 19× volume of tissue weight of DPBS
SP:SAMPLEPREP_SUMMARY            	with 1× phosphatase inhibitor / protease inhibitor solution for protein
SP:SAMPLEPREP_SUMMARY            	quantification and immunoblot analysis or combined with 19× volume of tissue
SP:SAMPLEPREP_SUMMARY            	weight of ice-cold 60% methanol (LCMS grade, EMD Millipore Corporation)
SP:SAMPLEPREP_SUMMARY            	containing 0.01% (w/v) butylated hydroxytoluene (BHT, Sigma Aldrich) for lipid
SP:SAMPLEPREP_SUMMARY            	extraction. The 10,000 × g supernatant was loaded on top of the triple sucrose
SP:SAMPLEPREP_SUMMARY            	density gradient (0.6 M, 1.3M, 2.5 M) as indicated in the method (Vella et al.,
SP:SAMPLEPREP_SUMMARY            	2017) in ultra-clear SW40Ti tubes (Beckman Coulter). The sucrose gradients were
SP:SAMPLEPREP_SUMMARY            	centrifuged at 200,000 x g avg at 4◦C for 173 min using a SW40Ti rotor
SP:SAMPLEPREP_SUMMARY            	(Beckman Coulter). After the spin, the three fractions (F1, F2 and F3, 1.2ml
SP:SAMPLEPREP_SUMMARY            	each) were sequentially collected and refractive index wasmeasured. Each
SP:SAMPLEPREP_SUMMARY            	fraction was subjected to a wash spin in ice-cold DPBS at 128,000 × g avg, at
SP:SAMPLEPREP_SUMMARY            	4◦C for 80 min using a F37L-8 × 100 rotor (Thermo Fisher Scientific). The
SP:SAMPLEPREP_SUMMARY            	pelleted EVs were resuspended in 150 μl ice-cold DPBS with 1x phosphatase
SP:SAMPLEPREP_SUMMARY            	inhibitor / protease inhibitor solution.
SP:SAMPLEPREP_PROTOCOL_FILENAME  	Su_et_al_2021.pdf
SP:EXTRACTION_METHOD             	The “total brain with collagenase” tissue pellets in ice-cold 60%methanol
SP:EXTRACTION_METHOD             	containing 0.01% (w/v) BHTwere homogenised using a cell disrupter as described
SP:EXTRACTION_METHOD             	above. 100 μl of the homogenates were combined with 100 μl of 60%methanol
SP:EXTRACTION_METHOD             	containing 0.01% (w/v) BHT. 80 μl of the F2BDEVsuspensionswere combinedwith 20
SP:EXTRACTION_METHOD             	μl of ice-coldmethanolwith0.1%(w/v)BHTand100μl of ice-cold methanol to make a
SP:EXTRACTION_METHOD             	final volume of 200 μl 60%methanol containing 0.01% (w/v) BHT. All samples were
SP:EXTRACTION_METHOD             	sonicated in an ice-cold water bath sonicator (20min) prior to lipid
SP:EXTRACTION_METHOD             	extraction.Monophasic lipid extraction followed the method previously reported
SP:EXTRACTION_METHOD             	by Lydic et al. (Lydic et al., 2015) with modification as described below. 120
SP:EXTRACTION_METHOD             	μl of MilliQwater, 420 μl of methanol with 0.01% (w/v) BHT, and 270 μl of
SP:EXTRACTION_METHOD             	chloroform were added to all samples. For every 10 μg protein present in the
SP:EXTRACTION_METHOD             	samples, 1 μl of a customised isotope labelled internal standard lipid mixture
SP:EXTRACTION_METHOD             	and 1 μl of a d5-TG Internal Standard Mixture I (Avanti Polar Lipids,
SP:EXTRACTION_METHOD             	Alabaster, AL, USA) were added. The customised isotope labelled internal
SP:EXTRACTION_METHOD             	standard mixture was comprised of 14 deuterated lipid standards (Avanti Polar
SP:EXTRACTION_METHOD             	Lipids, Alabaster, AL, USA): 15:0-18:1(d7) PC (250 μM), 15:0-18:1(d7) PE (240
SP:EXTRACTION_METHOD             	μM), 15:0-18:1(d7) PS (250 μM), 15:0-18:1(d7) PG (20 μM), 15:0-18:1(d7) PI
SP:EXTRACTION_METHOD             	(220 μM), 15:0-18:1(d7) PA (180 μM), 18:1(d7) LPC (45 μM), 18:1(d7) LPE (10
SP:EXTRACTION_METHOD             	μM), 18:1(d7) Chol Ester (10 μM), 18:1(d7) MG (10 μM), 15:0-18:1(d7) DG (17
SP:EXTRACTION_METHOD             	μM), 18:1(d9) SM (80 μM), d18:1(d7)-15:0 Cer (40 μM) and Cholesterol(d7) (20
SP:EXTRACTION_METHOD             	μM). The d5-TG Internal StandardMixture I contained 20:5-22:6-20:5 (d5) TG
SP:EXTRACTION_METHOD             	(4.03 μM), 14:0-16:1-14:0 (d5) TG(3.99 μM), 15:0-18:1-15:0 (d5) TG(3.97 μM),
SP:EXTRACTION_METHOD             	16:0-18:0-16:0 (d5) TG(4.05 μM), 17:0-17:1-17:0 (d5) TG(4.14 μM), 19:0-12:0-
SP:EXTRACTION_METHOD             	19:0 (d5) TG (4.01 μM), 20:0-20:1-20:0 (d5) TG (3.81 μM), 20:2-18:3-20:2 (d5)
SP:EXTRACTION_METHOD             	TG (3.96 μM), 20:4-18:2-20:4 (d5) TG (3.90 μM). The 15:0-18:1-15:0 (d5) TG was
SP:EXTRACTION_METHOD             	used for semi-quantification of endogenous TG lipids. Samples were vortexed
SP:EXTRACTION_METHOD             	thoroughly and incubated with 1,000 rpmshaking at room temperature for 30min,
SP:EXTRACTION_METHOD             	followed by centrifugation at 14,000 rpmat roomtemperature for 15 min.
SP:EXTRACTION_METHOD             	Supernatants containing lipids were transferred to new tubes. The remaining
SP:EXTRACTION_METHOD             	pellets were re-extracted with 100 μL of MilliQ water and 400 μl of
SP:EXTRACTION_METHOD             	chloroform:methanol (1:2, v:v) containing 0.01% (w/v) butylated hydroxytoluene
SP:EXTRACTION_METHOD             	(BHT) following incubation and centrifugation as described above. The
SP:EXTRACTION_METHOD             	supernatants from the repetitive extractions were collected and pooled, dried by
SP:EXTRACTION_METHOD             	evaporation under vacuum using a GeneVac miVac sample concentrator (SP
SP:EXTRACTION_METHOD             	Scientific, Warminster, PA, USA) and then reconstituted in
SP:EXTRACTION_METHOD             	isopropanol:methanol:chloroform (4:2:1, v:v:v, containing 0.01% BHT) at a final
SP:EXTRACTION_METHOD             	concentration of 4 μl lipid extract per μg protein.
SP:SAMPLE_DERIVATIZATION         	Derivatization of aminophospholipids (i.e., PE and PS) and
SP:SAMPLE_DERIVATIZATION         	plasmalogen-containing lipids followed the method previously reported by Ryan
SP:SAMPLE_DERIVATIZATION         	and Reid (2016). Prior to derivatization, a 2.5 mM stock solution of
SP:SAMPLE_DERIVATIZATION         	triethyamine (TEA) in chloroform was freshly prepared by adding 3.4 μl TEA to
SP:SAMPLE_DERIVATIZATION         	10 ml of chloroform. A 2.5 mM stock solution of S,S’-
SP:SAMPLE_DERIVATIZATION         	dimethylthiobutanoylhydroxysuccinimide ester iodide (13C1-DMBNHS) was freshly
SP:SAMPLE_DERIVATIZATION         	prepared by dissolving 4.87 mg 13C1- DMBNHS in 5 ml of dimethylformamide (DMF).
SP:SAMPLE_DERIVATIZATION         	A stock solution of 3.94 mM iodine was freshly prepared by dissolving 10 mg
SP:SAMPLE_DERIVATIZATION         	iodine in 10 ml chloroform. A stock solution of 90 mM ammonium bicarbonate was
SP:SAMPLE_DERIVATIZATION         	freshly prepared by dissolving 35.6 mg ammonium bicarbonate in 5 ml of HPLC
SP:SAMPLE_DERIVATIZATION         	methanol. A solution of 2:1 (v:v) chloroform:methanol containing 266 μM iodine
SP:SAMPLE_DERIVATIZATION         	and 2mMammoniumbicarbonatewas prepared by adding 160 μl of 3.94mMiodine in
SP:SAMPLE_DERIVATIZATION         	chloroformto 1.44ml chloroform, and 53.3 μl of 90mMammonium bicarbonate
SP:SAMPLE_DERIVATIZATION         	inmethanol to 746.7ml methanol, then combined and placed in an ice bath. Due to
SP:SAMPLE_DERIVATIZATION         	the limitations in sample amounts, no replicate derivatization reactions were
SP:SAMPLE_DERIVATIZATION         	performed. 4 μl of brain tissue or BDEV lipid extracts were aliquoted to
SP:SAMPLE_DERIVATIZATION         	individual wells of a Whatman Multi-Chem 96-well plate (Sigma Aldrich, St.
SP:SAMPLE_DERIVATIZATION         	Louis, MO, USA). The solvent was evaporated under vacuum with a GeneVac miVac
SP:SAMPLE_DERIVATIZATION         	sample concentrator. 40 μl of a solution of 39:1.1:1 (v:v:v) chloroform:2.5 mM
SP:SAMPLE_DERIVATIZATION         	TEA:2.5 mM 13C1-DMBNHS reagent was added to each dried lipid extract and the
SP:SAMPLE_DERIVATIZATION         	96-well plate was sealed with Teflon Ultra Thin Sealing Tape. Samples were then
SP:SAMPLE_DERIVATIZATION         	incubated at room temperature with gentle shaking for 30 min. After incubation,
SP:SAMPLE_DERIVATIZATION         	the solvents were evaporated under vacuum with a GeneVac miVac sample
SP:SAMPLE_DERIVATIZATION         	concentrator and samples were chilled on ice for 10 min prior to addition of 40
SP:SAMPLE_DERIVATIZATION         	μl of the 2:1 (v:v) chloroform:methanol containing 266 μMiodine and 2
SP:SAMPLE_DERIVATIZATION         	mMammonium bicarbonate. Reactions were mixed by careful pipetting and the plate
SP:SAMPLE_DERIVATIZATION         	was sealed with aluminiumfoil and then placed on ice for 5min before solvents
SP:SAMPLE_DERIVATIZATION         	were completely removed by evaporation under vacuum with a GeneVac miVac sample
SP:SAMPLE_DERIVATIZATION         	concentrator. The dried lipid extracts were washed three times with 40 μl of 10
SP:SAMPLE_DERIVATIZATION         	mM aqueous ammonium. Remaining traces of water were then removed by evaporation
SP:SAMPLE_DERIVATIZATION         	under vacuum with a GeneVac miVac sample concentrator. The derivatized brain
SP:SAMPLE_DERIVATIZATION         	tissue lipid extracts and BDEV lipid extracts were then resuspended in 50 μl
SP:SAMPLE_DERIVATIZATION         	and 25 μl of isopropanol:methanol:chloroform(4:2:1, v:v:v) containing
SP:SAMPLE_DERIVATIZATION         	20mMammoniumformate respectively. The 96-well plate was then sealed with Teflon
SP:SAMPLE_DERIVATIZATION         	Ultra Thin Sealing Tape prior to mass spectrometry analysis.
#CHROMATOGRAPHY
CH:CHROMATOGRAPHY_SUMMARY        	Direct infusion lipidomic analyses were conducted. For underivatized samples, 4
CH:CHROMATOGRAPHY_SUMMARY        	μl of brain tissue or BDEV lipid extracts were aliquoted in triplicate to
CH:CHROMATOGRAPHY_SUMMARY        	individual wells of a twin-tec 96-well plate (Eppendorf,Hamburg,Germany). The
CH:CHROMATOGRAPHY_SUMMARY        	brain tissue lipid extracts andBDEVlipid extractswere dried and then resuspended
CH:CHROMATOGRAPHY_SUMMARY        	in 50 μl (brain tissue) and 25 μl (BDEV) of
CH:CHROMATOGRAPHY_SUMMARY        	isopropanol:methanol:chloroform(4:2:1, v:v:v) containing 20mMammonium formate
CH:CHROMATOGRAPHY_SUMMARY        	respectively. The 96-well plate was then sealed with Teflon Ultra Thin Sealing
CH:CHROMATOGRAPHY_SUMMARY        	Tape prior to mass spectrometry analysis. 10 μl of each underivatized or
CH:CHROMATOGRAPHY_SUMMARY        	derivatized lipid sample was aspirated and introduced via nano-ESI to an
CH:CHROMATOGRAPHY_SUMMARY        	Orbitrap Fusion Lumos mass spectrometer (ThermoFisher Scientific, San Jose, CA,
CH:CHROMATOGRAPHY_SUMMARY        	USA) using anAdvion TriversaNanomate (Advion, Ithaca,NY, USA) operating with a
CH:CHROMATOGRAPHY_SUMMARY        	spray voltage of 1.1 kV and a gas pressure of 0.3 psi in both positive and
CH:CHROMATOGRAPHY_SUMMARY        	negative ionizationmodes. For MS analysis, the RF lens was set at 10%. Full scan
CH:CHROMATOGRAPHY_SUMMARY        	mass spectra were acquired at a mass resolving power of 500,000 (at 200 m/z)
CH:CHROMATOGRAPHY_SUMMARY        	across a m/z range of 350 – 1600 using quadrupole isolation, with an automatic
CH:CHROMATOGRAPHY_SUMMARY        	gain control (AGC) target of 5e5. Themaximum injection time was set at 50 ms.
CH:CHROMATOGRAPHY_SUMMARY        	Spectra were acquired and averaged for 3 min. Following initial
CH:CHROMATOGRAPHY_SUMMARY        	‘sum-composition’ lipid assignments by database analysis (see below),
CH:CHROMATOGRAPHY_SUMMARY        	‘targeted’ higher-energy collision induced dissociation (HCD-MS/MS) product
CH:CHROMATOGRAPHY_SUMMARY        	ion spectra were acquired on selected precursor ions at amass resolving power of
CH:CHROMATOGRAPHY_SUMMARY        	120,000 and default activation times in positive ionizationmode using the
CH:CHROMATOGRAPHY_SUMMARY        	underivatized lipid extracts to confirm the identities of lipid head groups, or
CH:CHROMATOGRAPHY_SUMMARY        	in negative ionization mode using underivatized lipid extracts for fatty acid
CH:CHROMATOGRAPHY_SUMMARY        	chain identification. HCD-MS/MS collision energies were individually optimized
CH:CHROMATOGRAPHY_SUMMARY        	for each lipid class of interest using commercially available lipid standards
CH:CHROMATOGRAPHY_SUMMARY        	whenever possible.
CH:CHROMATOGRAPHY_TYPE           	None (Direct infusion)
CH:INSTRUMENT_NAME               	none
CH:COLUMN_NAME                   	none
CH:SOLVENT_A                     	none
CH:SOLVENT_B                     	none
CH:FLOW_GRADIENT                 	none
CH:FLOW_RATE                     	none
CH:COLUMN_TEMPERATURE            	none
#ANALYSIS
AN:ANALYSIS_TYPE                 	MS
AN:ANALYSIS_PROTOCOL_FILE        	Su_et_al_2021.pdf
#MS
MS:INSTRUMENT_NAME               	Thermo Orbitrap Fusion Lumos Tribrid
MS:INSTRUMENT_TYPE               	Orbitrap
MS:MS_TYPE                       	ESI
MS:ION_MODE                      	POSITIVE
MS:MS_COMMENTS                   	Non derivatized lipids were measured in positive mode in triplicate. ‘Sum
MS:MS_COMMENTS                   	composition’ level lipid identifications were achieved using a developmental
MS:MS_COMMENTS                   	version of LipidSearch software 5.0α (Mitsui Knowledge Industry, Tokyo, Japan)
MS:MS_COMMENTS                   	by automated peak peaking and searching against a user-defined custom database
MS:MS_COMMENTS                   	of lipid species (including the deuterated internal standard lipid species and
MS:MS_COMMENTS                   	allowing for the mass shifts introduced by 13C1-DMBNHS and iodine/methanol
MS:MS_COMMENTS                   	derivatization). The parent tolerance was set at 3.0 ppm, a parent ion intensity
MS:MS_COMMENTS                   	threshold three times that of the experimentally observed instrument noise
MS:MS_COMMENTS                   	intensity, and a max isotope number of 1 (i.e., matching based on the
MS:MS_COMMENTS                   	monoisotopic ion and the M+1 isotope), a correlation threshold (%) of 0.3 and an
MS:MS_COMMENTS                   	isotope threshold (%) of 0.1. The lipid nomenclature used here follows that
MS:MS_COMMENTS                   	defined by the LIPID MAPS consortium (Fahy et al., 2005). Semi-quantification of
MS:MS_COMMENTS                   	the abundances of identified lipid species was performed using an in-house R
MS:MS_COMMENTS                   	script, by comparing the identified lipid ion peak areas to the peak areas of
MS:MS_COMMENTS                   	the internal standard for each lipid class or subclass, followed by
MS:MS_COMMENTS                   	normalization against the total protein amount in the samples.
#MS_METABOLITE_DATA
MS_METABOLITE_DATA:UNITS	pmol/µg protein
MS_METABOLITE_DATA_START
Samples	051071CTL_T	06972CTL_T	07022CTL_T	07284CTL_T	07635CTL_T	V13052CTL_T	V14035CTL_T	V11052CTL_T	06379AD_T	08007AD_T	08312AD_T	08329AD_T	09006AD_T	09090AD_T	09214AD_T	V15016AD_T	051071CTL_F2	06972CTL_F2	07022CTL_F2	07284CTL_F2	07635CTL_F2	V11052CTL_F2	V13052CTL_F2	V14035CTL_F2	06379AD_F2	08007AD_F2	08312AD_F2	08329AD_F2	09006AD_F2	09090AD_F2	09214AD_F2	V15016AD_F2
Factors	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:CTL	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:Brain | Diagnosis:AD	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:CTL	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD	Sample source:BDEV | Diagnosis:AD
CE(16:0)	0.04	0.204	0.042	0.012	0.032	0.017	0.026	0.022	0.013	0.044	0.074	0.268	0.259	0.05	0.833	0.037	0.084	0.015	0.213	0.025	0.037	0.061	0.071	0.123	0.042	0.142	0.231	0.127	0.113	0.06	0.295	0.113
CE(16:1)	0.108	0.332	0.039	0.004	0.019	0.033	0.018	0.004	0.003	0.035	0.051	0.443	0.701	0.02	0.572	0.007	0.196	0.008	0.286	0.011	0.029	0.036	0.01	0.083	0.027	0.154	0.399	0.059	0.04	0.017	0.132	0.042
CE(18:1)	0.213	0.573	0.334	0.078	0.14	0.101	0.151	0.089	0.092	0.165	0.27	0.789	0.585	0.219	1.987	0.22	0.522	0.178	0.816	0.132	0.191	0.348	0.29	0.359	0.255	0.594	0.646	0.536	0.501	0.277	0.99	0.433
CE(18:2)	0.087	0.359	0.424	0.096	0.311	0.117	0.152	0.249	0.033	0.131	0.215	0.441	0.342	0.077	0.611	0.224	0.395	0.308	0.629	0.186	0.366	0.571	0.782	0.724	0.183	0.414	0.538	0.62	0.844	0.123	1.174	0.433
CE(20:4)	0.206	0.168	0.601	0.144	0.158	0.166	0.094	0.261	0.144	0.174	0.363	0.618	0.208	0.331	0.465	0.618	0.333	0.226	0.426	0.251	0.137	0.305	0.331	0.443	0.13	0.18	0.347	0.324	0.323	0.249	0.414	0.366
CE(22:6)	0.01	0.018	0.076	0.014	0.01	0.027	0.009	0.012	0.013	0.014	0.028	0.073	0.02	0.037	0.048	0.059	0.029	0.044	0.08	0.049	0.007	0.078	0.032	0.053	0.01	0	0.026	0.03	0.021	0.033	0.035	0.018
Cer(d24:0)	0.023	0.118	0.041	0.003	0.01	0.116	0.013	0.031	0.017	0.008	0.129	0.198	0.011	0.034	0.111	0.017	0.028	0.016	0.068	0.968	0.016	0.023	0.009	0.022	0.037	13.632	0.033	0.042	0.043	0.027	0.016	0.022
Cer(d30:1)	0.012	0.107	0.012	0.007	0.007	0.018	0.009	0.046	0.006	0.003	0.006	0.009	0.01	0.003	0.032	0.004	0.012	0.028	0.045	0.006	0.004	0	0.006	0.009	0.004	0.107	0.016	0.011	0.066	0.056	0.007	0.012
Cer(d31:3)	0.403	1.064	0.079	0.022	0.024	1.975	0.18	0.455	0.099	0.02	0.022	0.102	0.074	0.026	1.211	0.062	0.081	0.633	0.533	0.027	0.027	0.076	0.018	0.03	0.106	0.926	0.019	0.113	1.041	0.871	0.115	0.102
Cer(d32:0)	0.444	1.043	0.013	0.017	0.01	2.5	0.067	0.36	0.046	0.009	0.014	0.025	0.022	0.054	1.368	0.014	0.018	0.429	0.461	0.01	0.006	0.023	0.007	0.021	0.006	0.874	0.019	0.011	0.918	0.817	0.004	0.011
Cer(d34:0)	0.329	0.868	0.009	0.008	0.004	2.131	0.054	0.288	0.03	0.006	0.01	0.04	0.024	0.031	1.055	0.017	0.021	0.327	0.363	0.008	0.011	0.023	0.015	0.045	0.017	0.754	0.053	0.007	0.743	0.663	0.01	0.028
Cer(d34:1)	0.325	0.721	0.353	0.196	0.222	0.377	0.193	0.415	0.266	0.206	0.23	0.387	0.172	0.401	0.403	0.542	0.442	0.579	0.935	0.379	0.372	0.548	0.457	0.568	0.362	1.101	0.665	0.368	0.782	0.853	0.325	0.615
Cer(d36:0)	0.121	0.386	0.065	0.033	0.021	0.639	0.04	0.127	0.064	0.029	0.066	0.155	0.062	0.067	0.374	0.132	0.062	0.139	0.237	0.033	0.034	0.056	0.073	0.089	0.062	0.326	0.143	0.071	0.279	0.294	0.044	0.089
Cer(d36:1)	3.932	4.631	7.302	4.013	3.137	5.238	3.238	4.386	4.716	4.005	5.683	7.339	3.388	7.107	5.628	9.538	4.268	5.755	8.077	5.687	3.922	6.216	7.242	5.691	3.74	5.464	7.697	6.336	4.173	7.157	4.803	5.035
Cer(d36:2)	1.635	1.669	1.754	1.416	1.241	1.707	1.258	1.754	1.53	1.773	2.045	2.401	1.208	2.906	2.136	2.955	1.565	1.975	2.163	2.105	1.116	1.679	2.606	1.555	0.947	2.008	2.537	2.067	1.3	2.28	1.52	1.5
Cer(d37:1)	0.003	0.054	0.023	0.011	0.006	0.011	0.006	0.004	0.013	0.012	0.021	0.047	0.029	0.016	0.029	0.03	0.006	0.003	0.026	0.014	0.009	0.017	0.02	0.014	0.015	0.109	0.051	0.017	0.007	0.02	0.011	0.017
Cer(d38:1)	0.898	1.244	1.901	0.891	0.98	1.61	1.024	1.054	1.337	1.269	1.189	1.809	1.048	1.887	1.807	2.534	1.137	1.431	2.181	1.48	1.184	1.969	1.88	1.601	1.058	1.55	1.719	1.587	1.306	1.945	1.311	1.251
Cer(d38:2)	0.113	0.151	0.125	0.143	0.137	0.131	0.11	0.16	0.109	0.187	0.178	0.157	0.104	0.314	0.175	0.231	0.138	0.162	0.215	0.203	0.105	0.175	0.271	0.131	0.064	0.18	0.286	0.092	0.084	0.241	0.091	0.109
Cer(d40:1)	0.061	0.217	0.271	0.119	0.054	0.101	0.042	0.068	0.067	0.062	0.238	0.265	0.147	0.168	0.132	0.164	0.15	0.115	0.333	0.11	0.157	0.231	0.165	0.282	0.278	0.498	0.481	0.068	0.207	0.195	0.175	0.321
Cer(d40:2)	0.021	0.087	0.107	0.041	0.018	0.035	0.012	0.024	0.015	0.018	0.092	0.089	0.044	0.059	0.03	0.04	0.047	0.042	0.094	0.03	0.052	0.066	0.053	0.087	0.093	0.221	0.239	0.025	0.061	0.042	0.042	0.154
Cer(d41:1)	0.02	0.088	0.25	0.072	0.012	0.055	0.013	0.01	0.021	0.019	0.204	0.16	0.098	0.087	0.03	0.097	0.028	0.014	0.058	0.014	0.026	0.042	0.034	0.06	0.065	0.078	0.105	0.038	0.031	0.026	0.049	0.061
Cer(d41:2)	0.017	0.085	0.203	0.066	0.019	0.048	0.01	0.011	0.016	0.018	0.169	0.132	0.06	0.092	0.018	0.074	0.023	0.01	0.038	0.019	0.033	0.031	0.027	0.033	0.058	0.035	0.072	0.05	0.03	0.024	0.046	0.068
Cer(d42:1)	0.06	0.204	0.639	0.16	0.026	0.146	0.043	0.017	0.075	0.041	0.331	0.346	0.212	0.21	0.058	0.241	0.151	0.07	0.354	0.092	0.152	0.292	0.176	0.466	0.522	0.691	0.649	0.08	0.244	0.115	0.218	0.515
Cer(d42:2)	1.167	3.053	8.757	2.056	0.556	2.984	0.594	0.549	1.036	0.666	3.842	4.047	2.496	2.298	0.615	3.137	0.764	0.775	2.207	0.848	0.845	1.192	1.117	1.317	1.29	1.71	1.721	1.338	1.053	0.597	0.958	1.664
Cer(d42:3)	0.058	0.158	0.367	0.114	0.05	0.123	0.039	0.029	0.095	0.069	0.298	0.328	0.125	0.187	0.087	0.208	0.071	0.077	0.194	0.056	0.076	0.086	0.113	0.134	0.179	0.202	0.287	0.093	0.1	0.053	0.142	0.216
Cer(d44:2)	0.035	0.118	0.363	0.107	0.02	0.07	0.02	0.005	0.033	0.024	0.16	0.18	0.1	0.091	0.009	0.146	0.015	0	0.054	0.01	0.012	0.013	0.027	0.024	0.02	0.025	0.05	0.017	0.008	0.008	0.005	0.02
Hex1Cer(d33:1)	0.333	0.268	0.239	0.179	0.207	0.282	0.184	0.257	0.243	0.208	0.194	0.228	0.221	0.218	0.264	0.236	0.234	0.238	0.29	0.187	0.202	0.199	0.163	0.24	0.29	0.321	0.279	0.352	0.289	0.231	0.274	0.296
Hex1Cer(d35:2)	1.102	0.962	0.957	0.65	0.695	0.998	0.673	0.81	0.903	0.653	0.704	0.758	0.87	0.93	1.059	0.944	0.817	0.833	1.093	0.65	0.78	0.768	0.611	0.786	1.093	1.187	0.86	1.138	0.976	0.813	0.812	0.992
Hex1Cer(d36:1)	1.193	2.912	7.05	0.868	0.513	3.536	0.584	0.393	0.641	0.531	1.898	3.707	2.129	1.549	0.634	3.121	0.243	0.162	1.604	0.203	0.416	0.485	0.333	0.375	0.213	0.793	0.391	1.642	0.468	0.157	0.475	0.715
Hex1Cer(d36:2)	0.129	0.26	0.584	0.061	0.034	0.31	0.025	0.02	0.045	0.037	0.216	0.328	0.194	0.183	0.043	0.336	0.025	0	0.09	0.008	0.014	0.017	0.01	0.018	0.017	0.125	0.028	0.078	0.066	0.009	0.027	0.038
Hex1Cer(d38:1)	0.105	0.401	0.675	0.119	0.049	0.336	0.062	0.097	0.07	0.054	0.258	0.493	0.244	0.247	0.132	0.306	0.03	0	0.118	0.019	0.024	0.04	0.017	0.034	0.029	0.558	0.102	0.128	0.031	0.012	0.05	0.071
Hex1Cer(d38:2)	10.394	8.551	13.921	5.011	6.327	9.314	4.924	7.685	8.113	6.499	8.34	8.302	8.593	9.486	6.229	10.933	8.491	7.967	9.798	6.125	6.956	5.644	5.65	9.024	10.003	7.937	7.952	14.121	10.215	8.255	6.527	10.907
Hex1Cer(d40:1)	0.284	1.006	1.45	0.337	0.091	0.768	0.132	0.105	0.195	0.094	0.716	1.164	0.694	0.786	0.18	0.83	0.037	0.019	0.223	0.029	0.042	0.071	0.038	0.062	0.081	0.51	0.123	0.387	0.094	0.034	0.092	0.203
Hex1Cer(d40:2)	0.228	0.549	0.631	0.144	0.055	0.388	0.059	0.041	0.103	0.063	0.344	0.561	0.319	0.407	0.099	0.426	0.016	0.01	0.141	0.013	0.027	0.022	0.013	0.047	0.028	0.408	0.091	0.163	0.028	0.02	0.018	0.062
Hex1Cer(d41:1)	0.556	1.451	2.209	0.534	0.172	1.304	0.265	0.14	0.396	0.229	1.15	1.814	1.066	1.383	0.494	1.576	0.066	0.037	0.438	0.061	0.077	0.126	0.106	0.096	0.134	0.335	0.152	0.692	0.187	0.109	0.142	0.319
Hex1Cer(d41:2)	0.362	1.064	1.391	0.317	0.155	0.788	0.139	0.087	0.222	0.137	0.76	1.139	0.616	0.874	0.214	0.819	0.026	0.016	0.251	0.04	0.058	0.071	0.056	0.045	0.048	0.15	0.097	0.414	0.065	0.041	0.064	0.147
Hex1Cer(d42:1)	2.078	4.2	8.526	1.74	0.655	4.357	0.971	0.574	1.576	1.008	3.204	5.879	3.615	4.67	1.312	5.555	0.484	0.26	1.714	0.411	0.507	0.751	0.677	0.667	0.869	1.023	0.696	2.942	0.894	0.517	0.877	1.63
Hex1Cer(d42:2)	12.045	30.767	56.601	9.931	4.719	31.58	5.497	4.284	7.772	5.235	18.523	36.436	21.174	23.887	6.399	28.346	2.433	2.252	11.558	2.551	3.377	4.442	3.626	4.246	3.596	4.753	3.376	15.767	4.796	2.666	4.131	7.424
Hex1Cer(d42:3)	1.379	2.782	3.975	0.777	0.531	2.845	0.508	0.471	0.797	0.588	1.984	2.988	1.792	2.626	0.874	2.373	0.127	0.127	1.002	0.152	0.245	0.265	0.24	0.273	0.212	0.551	0.593	1.209	0.291	0.174	0.336	0.545
Hex1Cer(d43:1)	0.821	1.53	2.751	0.634	0.233	1.371	0.369	0.154	0.654	0.464	1.108	2.259	1.283	1.857	0.523	2.319	0.076	0.037	0.524	0.063	0.113	0.145	0.15	0.132	0.205	0.278	0.157	0.916	0.181	0.08	0.198	0.495
Hex1Cer(d44:1)	0.167	0.241	0.561	0.105	0.028	0.193	0.055	0.016	0.121	0.079	0.14	0.5	0.244	0.332	0.054	0.496	0.012	0	0.051	0.006	0.004	0	0.007	0.004	0.011	0.062	0.006	0.127	0.012	0.009	0	0.07
Hex1Cer(d44:2)	3.037	5.76	9.128	2.003	0.967	4.708	1.303	0.697	2.14	1.579	3.262	7.972	4.425	5.457	1.801	6.649	0.466	0.288	2.152	0.472	0.579	0.688	0.714	0.67	0.803	1.1	0.622	3.433	0.85	0.539	0.844	1.724
Hex1Cer(d44:3)	0.533	0.917	1.184	0.304	0.163	0.775	0.189	0.097	0.365	0.259	0.618	1.31	0.703	1.158	0.37	0.896	0.027	0.024	0.201	0.029	0.04	0.046	0.046	0.037	0.05	0.089	0.088	0.414	0.06	0.043	0.074	0.149
Hex2Cer(d28:0)	0.064	0.815	0.113	0.054	0.079	0.316	0.09	0.422	0.125	0.047	0.04	0.108	0.104	0.117	0.204	0.082	0.074	0.399	0.531	0.164	0.054	0.077	0.061	0.108	0.082	0.977	0.076	0.213	0.942	0.753	0.081	0.057
Hex2Cer(d36:1)	0.032	0.134	0.124	0.055	0.008	0.049	0.015	0.004	0.05	0.037	0.141	0.23	0.09	0.137	0.035	0.133	0	0.01	0.016	0.003	0	0	0.02	0.015	0.006	0.014	0.036	0.109	0.004	0.024	0	0.025
Hex2Cer(d42:2)	0.305	1.447	1.057	0.415	0.104	0.352	0.045	0.052	0.212	0.073	1.192	1.251	0.587	1.127	0.136	0.594	0.024	0.014	0.086	0.011	0.016	0.017	0.014	0.036	0.046	0.052	0.124	0.344	0.058	0.038	0.049	0.1
Hex2Cer(d43:0)	0.134	0.014	0.153	0.01	0.021	0.163	0.017	0.008	0.139	0.023	0.005	0.104	0.096	0.02	0.138	0.103	0.195	0.036	0.172	0.052	0.035	0.188	0.048	0.038	0.159	0.033	0.035	0.286	0.157	0.037	0.148	0.172
Hex2Cer(d44:2)	0.036	0.113	0.097	0.052	0.006	0.019	0	0	0.024	0	0.138	0.175	0.076	0.153	0.006	0.072	0	0	0	0	0	0	0	0	0	0	0	0.006	0	0.005	0	0
MS_METABOLITE_DATA_END
#METABOLITES
METABOLITES_START
metabolite_name
CE(16:0)
CE(16:1)
CE(18:1)
CE(18:2)
CE(20:4)
CE(22:6)
Cer(d24:0)
Cer(d30:1)
Cer(d31:3)
Cer(d32:0)
Cer(d34:0)
Cer(d34:1)
Cer(d36:0)
Cer(d36:1)
Cer(d36:2)
Cer(d37:1)
Cer(d38:1)
Cer(d38:2)
Cer(d40:1)
Cer(d40:2)
Cer(d41:1)
Cer(d41:2)
Cer(d42:1)
Cer(d42:2)
Cer(d42:3)
Cer(d44:2)
Hex1Cer(d33:1)
Hex1Cer(d35:2)
Hex1Cer(d36:1)
Hex1Cer(d36:2)
Hex1Cer(d38:1)
Hex1Cer(d38:2)
Hex1Cer(d40:1)
Hex1Cer(d40:2)
Hex1Cer(d41:1)
Hex1Cer(d41:2)
Hex1Cer(d42:1)
Hex1Cer(d42:2)
Hex1Cer(d42:3)
Hex1Cer(d43:1)
Hex1Cer(d44:1)
Hex1Cer(d44:2)
Hex1Cer(d44:3)
Hex2Cer(d28:0)
Hex2Cer(d36:1)
Hex2Cer(d42:2)
Hex2Cer(d43:0)
Hex2Cer(d44:2)
METABOLITES_END
#END