Summary of Study ST002110

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001336. The data can be accessed directly via it's Project DOI: 10.21228/M81D70 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002110
Study TitleTowards a mechanistic understanding of patient response to neoadjuvant SBRT with anti-PDL1 in human HPV-unrelated locally advanced HNSCC: Phase I/Ib trial results (Part 2)
Study SummaryFive-year survival for HPV-unrelated head and neck squamous cell carcinomas (HNSCC) remains below 50%. We assessed the safety of administering combination hypofractionated stereotactic body radiation therapy (SBRT) with anti-PDL-1 neoadjuvantly followed by adjuvant anti-PDL-1 with standard of care therapy (n=21). The primary endpoint of the study was safety, which was met. Secondary endpoints included radiographic, pathologic, and objective response, locoregional control (LRC), progression-free survival (PFS), and overall survival (OS). Among evaluable patients at early median follow-up of 16 months (448 days), OS was 83.3%, LRC and PFS were 83.3%, and major pathological response (MPR) or complete response (CR) was 75%. Circulating CD8/Treg ratio, CD4 effector memory T cells, and TCR repertoire emerged as biologic correlates of response to therapy. Using high-dimensional multi-omics and spatial data as well as biological correlatives pre- and post-treatment, three major changes were noted in responders within the tumor microenvironment (TME) (and within the blood) post-treatment: 1) an increase in effector T cells; 2) a decrease in immunosuppressive cells; and 3) an increase in antigen presentation. Non-responders appeared to fail due to a lack of one of these three identified steps needed for priming and maintaining activation of T cells. Multiple correlates for response, along with subsets of non-responders that may benefit from additional or alternative immunotherapies, were identified. This treatment is being tested in an ongoing phase II trial with a similar design, where we hope to confirm and expand on our understanding of the mechanisms underlying resistance to therapy.
Institute
University of Colorado Denver
Last NameCulp-Hill
First NameRachel
Address12801 E 17th Ave L18-9403D, Aurora, Colorado, 80045, USA
Emailrachel.hill@cuanschutz.edu
Phone303-724-5798
Submit Date2022-03-09
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailLC-MS
Release Date2022-04-04
Release Version1
Rachel Culp-Hill Rachel Culp-Hill
https://dx.doi.org/10.21228/M81D70
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001336
Project DOI:doi: 10.21228/M81D70
Project Title:Towards a mechanistic understanding of patient response to neoadjuvant SBRT with anti-PDL1 in human HPV-unrelated locally advanced HNSCC: Phase I/Ib trial results
Project Summary:Five-year survival for HPV-unrelated head and neck squamous cell carcinomas (HNSCC) remains below 50%. We assessed the safety of administering combination hypofractionated stereotactic body radiation therapy (SBRT) with anti-PDL-1 neoadjuvantly followed by adjuvant anti-PDL-1 with standard of care therapy (n=21). The primary endpoint of the study was safety, which was met. Secondary endpoints included radiographic, pathologic, and objective response, locoregional control (LRC), progression-free survival (PFS), and overall survival (OS). Among evaluable patients at early median follow-up of 16 months (448 days), OS was 83.3%, LRC and PFS were 83.3%, and major pathological response (MPR) or complete response (CR) was 75%. Circulating CD8/Treg ratio, CD4 effector memory T cells, and TCR repertoire emerged as biologic correlates of response to therapy. Using high-dimensional multi-omics and spatial data as well as biological correlatives pre- and post-treatment, three major changes were noted in responders within the tumor microenvironment (TME) (and within the blood) post-treatment: 1) an increase in effector T cells; 2) a decrease in immunosuppressive cells; and 3) an increase in antigen presentation. Non-responders appeared to fail due to a lack of one of these three identified steps needed for priming and maintaining activation of T cells. Multiple correlates for response, along with subsets of non-responders that may benefit from additional or alternative immunotherapies, were identified. This treatment is being tested in an ongoing phase II trial with a similar design, where we hope to confirm and expand on our understanding of the mechanisms underlying resistance to therapy.
Institute:University of Colorado Denver
Last Name:Culp-Hill
First Name:Rachel
Address:12801 E 17th Ave L18-9403D, Aurora, Colorado, 80045, USA
Email:rachel.hill@cuanschutz.edu
Phone:303-724-5798

Subject:

Subject ID:SU002195
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606

Factors:

Subject type: Human; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id NA Pre
SA202402BW48-38NA Post
SA202403BW48-39NA Post
SA202404BW48-40NA Post
SA202405BW48-37NA Pre
SA202406BW48-36NA Pre
SA202433BW48-1non-responder Post
SA202434BW48-5non-responder Post
SA202435BW48-29non-responder Post
SA202436BW48-7non-responder Post
SA202437BW48-25non-responder Post
SA202438BW48-4non-responder Pre
SA202439BW48-6non-responder Pre
SA202440BW48-28non-responder Pre
SA202441BW48-24non-responder Pre
SA202407BW48-13Responder Post
SA202408BW48-15Responder Post
SA202409BW48-11Responder Post
SA202410BW48-9Responder Post
SA202411BW48-3Responder Post
SA202412BW48-17Responder Post
SA202413BW48-21Responder Post
SA202414BW48-33Responder Post
SA202415BW48-35Responder Post
SA202416BW48-19Responder Post
SA202417BW48-31Responder Post
SA202418BW48-27Responder Post
SA202419BW48-23Responder Post
SA202420BW48-30Responder Pre
SA202421BW48-32Responder Pre
SA202422BW48-34Responder Pre
SA202423BW48-26Responder Pre
SA202424BW48-18Responder Pre
SA202425BW48-8Responder Pre
SA202426BW48-2Responder Pre
SA202427BW48-22Responder Pre
SA202428BW48-10Responder Pre
SA202429BW48-12Responder Pre
SA202430BW48-20Responder Pre
SA202431BW48-16Responder Pre
SA202432BW48-14Responder Pre
Showing results 1 to 40 of 40

Collection:

Collection ID:CO002188
Collection Summary:This was a multi-center, prospective, single-arm phase I/Ib safety trial. Patients eligible for treatment had to be diagnosed with non-metastatic, biopsy-proven p16-negative histology squamous cell carcinoma of the oral cavity, oropharynx, larynx, or hypopharynx, and had to be eligible and amenable to surgical resection. This study enrolled using a 3+3 model. Patients received one dose of neoadjuvant Durvalumab 1500 mg approximately 3-6 weeks before standard-of-care surgery given concurrently with the first dose of radiation (RT). The starting RT dose level was 6 Gy for 2 fractions (12 Gy total) every other day over approximately one week to sites of gross disease (Table 1) to minimize exposure to normal tissue. If toxicity developed and surgery was delayed by more than 6 weeks due to treatment toxicity (qualifying as a DLT), the radiation dose was set to be dropped per protocol for the next set of patients. If this dose was tolerated, the dose was increased to 6 Gy for 3 fractions (18 Gy total) for the next 3 patients. Patients proceeded to surgical resection approximately 3-6 weeks after radiation as recommended by the ENT surgeon. Post-operatively, pathology was reviewed at the multi-disciplinary head and neck conference, and the need for adjuvant therapy was discussed. For the first 8 patients, all patients were given adjuvant therapy based on presenting features. However, after patient 8, adjuvant therapy was dictated based on high-risk pathologic features as per the NCCN guidelines and treating physician recommendations. Adjuvant radiation included intensity-modulated radiation therapy of 60 Gy in 2 Gy once-daily fraction size once-daily fraction size (total of 30 fractions). If indicated, adjuvant systemic therapy included cisplatin or other cytotoxic chemotherapy or targeted biologics (Cetuximab) per physician discretion. All patients received adjuvant durvalumab to be initiated approximately 6-12 weeks post-surgery. It was given as 1500 mg intravenously once every 4 weeks for a maximum of 6 doses, or until progression, toxicity, or withdrawal from study. This was delivered either as monotherapy or concurrently with adjuvant radiation +/- systemic therapy for high-risk patients. Safety and toxicity evaluations were done throughout the study process. DLTs and adjustment of radiation doses were done during the neoadjuvant period.
Sample Type:Blood (plasma)

Treatment:

Treatment ID:TR002207
Treatment Summary:This was a multi-center, prospective, single-arm phase I/Ib safety trial. Patients eligible for treatment had to be diagnosed with non-metastatic, biopsy-proven p16-negative histology squamous cell carcinoma of the oral cavity, oropharynx, larynx, or hypopharynx, and had to be eligible and amenable to surgical resection. This study enrolled using a 3+3 model. Patients received one dose of neoadjuvant Durvalumab 1500 mg approximately 3-6 weeks before standard-of-care surgery given concurrently with the first dose of radiation (RT). The starting RT dose level was 6 Gy for 2 fractions (12 Gy total) every other day over approximately one week to sites of gross disease (Table 1) to minimize exposure to normal tissue. If toxicity developed and surgery was delayed by more than 6 weeks due to treatment toxicity (qualifying as a DLT), the radiation dose was set to be dropped per protocol for the next set of patients. If this dose was tolerated, the dose was increased to 6 Gy for 3 fractions (18 Gy total) for the next 3 patients. Patients proceeded to surgical resection approximately 3-6 weeks after radiation as recommended by the ENT surgeon. Post-operatively, pathology was reviewed at the multi-disciplinary head and neck conference, and the need for adjuvant therapy was discussed. For the first 8 patients, all patients were given adjuvant therapy based on presenting features. However, after patient 8, adjuvant therapy was dictated based on high-risk pathologic features as per the NCCN guidelines and treating physician recommendations. Adjuvant radiation included intensity-modulated radiation therapy of 60 Gy in 2 Gy once-daily fraction size once-daily fraction size (total of 30 fractions). If indicated, adjuvant systemic therapy included cisplatin or other cytotoxic chemotherapy or targeted biologics (Cetuximab) per physician discretion. All patients received adjuvant durvalumab to be initiated approximately 6-12 weeks post-surgery. It was given as 1500 mg intravenously once every 4 weeks for a maximum of 6 doses, or until progression, toxicity, or withdrawal from study. This was delivered either as monotherapy or concurrently with adjuvant radiation +/- systemic therapy for high-risk patients. Safety and toxicity evaluations were done throughout the study process. DLTs and adjustment of radiation doses were done during the neoadjuvant period.

Sample Preparation:

Sampleprep ID:SP002201
Sampleprep Summary:Metabolomics analyses were performed as extensively described in previous studies (Issaian et al., Hematologica 2021). A volume of 20μl of frozen plasma was extracted in either 480μl of methanol:acetonitrile:water (5:3:2, v/v/v) (D'Alessandro et al. JCI Insight 2021). After vortexing at 4°C for 30 min, extracts were separated from the protein pellet by centrifugation for 10 min at 10,000g at 4°C and stored at −80°C until analysis. Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry analyses were performed using a Vanquish UHPLC coupled online to a Q Exactive mass spectrometer (Thermo Fisher, Bremen, Germany) (Nemkov et al. Methods Mol Bio 2019). Samples were analyzed using a 5-minute gradient as described ( Nemkov et al. Methods Mol Bio 2019, Nemkov et al. JCI Insight 2020). Solvents were supplemented with 0.1% formic acid for positive mode runs and 1 mM ammonium acetate for negative mode runs. MS acquisition, data analysis and elaboration were performed as described.

Combined analysis:

Analysis ID AN003452 AN003453
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Vanquish Thermo Vanquish
Column Phenomenex Kinetex C18 (150 x 2.1mm,2.6um) Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode NEGATIVE POSITIVE
Units Relative Abundance Relative Abundance

Chromatography:

Chromatography ID:CH002550
Chromatography Summary:Negative Mode: Samples were analyzed using a 5-minute gradient as described (Nemkov et al. Methods Mol Bio 2019, Nemkov et al. JCI Insight 2020). Solvents were supplemented with 1 mM ammonium acetate for negative mode runs.
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase
  
Chromatography ID:CH002551
Chromatography Summary:Positive Mode: Samples were analyzed using a 5-minute gradient as described (Nemkov et al. Methods Mol Bio 2019, Nemkov et al. JCI Insight 2020). Solvents were supplemented with 0.1% formic acid for positive mode runs.
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase

MS:

MS ID:MS003215
Analysis ID:AN003452
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS acquisition, data analysis and elaboration were performed as described. (Nemkov et al. Methods Mol Bio 2019).
Ion Mode:NEGATIVE
  
MS ID:MS003216
Analysis ID:AN003453
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS acquisition, data analysis and elaboration were performed as described. (Nemkov et al. Methods Mol Bio 2019).
Ion Mode:POSITIVE
  logo