Summary of Study ST003120

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001938. The data can be accessed directly via it's Project DOI: 10.21228/M86T69 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003120
Study TitleMannose is crucial for mesoderm specification and symmetry breaking in gastruloids.
Study SummaryPatterning and growth are fundamental features of embryonic development that must be tightly coordinated. To understand how metabolism impacts early mesoderm development, we used mouse embryonic stem cell-derived gastruloids, that co-expressed glucose transporters with the mesodermal marker T/Bra. While the glucose mimic, 2-deoxy-D-glucose (2-DG), blocked T/Bra expression and abolished axial elongation in gastruloids, removal of glucose did not phenocopy 2-DG treatment despite a decline in glycolytic intermediates occurring under both conditions. As 2-DG could also act as a competitive inhibitor of mannose in protein glycosylation, we added mannose together with 2-DG and found that it could rescue the mesoderm specification both in vivo and in vitro. We further showed that blocking production and intracellular recycling of mannose abrogated mesoderm specification. Proteomics analysis revealed that mannose reversed glycosylation of the Wnt pathway regulator, Secreted Frizzled Receptor, Frzb. Our study showed how mannose is crucial for mesoderm specification in gastruloids.
Institute
Dept of Genetics, University of Cambridge
Last NameDingare
First NameChaitanya
AddressDowning Site, Cambridge, Cambridgeshire, CB2 3EH, United Kingdom
Emailcd705@cam.ac.uk
Phone+447916677460
Submit Date2024-02-24
Publicationshttps://doi.org/10.1101/2023.06.05.543730
Raw Data AvailableYes
Raw Data File Type(s)mzML, raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-03-13
Release Version1
Chaitanya Dingare Chaitanya Dingare
https://dx.doi.org/10.21228/M86T69
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001938
Project DOI:doi: 10.21228/M86T69
Project Title:Role of central carbon metabolism in embryonic development
Project Summary:This work aims to understand how central carbon metabolism plays a crucial role in germ layer fate specification and morphogenesis during gastrulation. In this project, we manipulated central carbon metabolism using different glucose concentrations and its inhibitors. To understand developmental phenotype of such manipulations, we analysed the levels of intermediates of the glycolytic pathway, oxidative phosphorylation, hexosamine biosynthetic pathway etc as well as glucose epimers such as fucose, mannose, galactose. We later tested how changes in these metabolite levels affected signalling pathways, important in germ layer fate specification and subsequently their morphogenesis.
Institute:Dept of Genetics, University of Cambridge
Last Name:Dingare
First Name:Chaitanya
Address:Downing Site, Cambridge, Cambridgeshire, CB2 3EH, United Kingdom
Email:cd705@cam.ac.uk
Phone:+447916677460
  logo