Summary of Study ST002917

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001813. The data can be accessed directly via it's Project DOI: 10.21228/M8C713 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002917
Study TitleTransporter-mediated depletion of apoplastic proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen
Study SummaryGC-MS analysis of apoplastic fluid extracted from arabidopsis plants treated with 100 nM flg22 or a mock treatment for 8 hours. Col-0 is wild type arabidopsis plants, QKO is a quadruple knockout mutant in the Col-0 background with knockouts in dde2-2, ein2-1, pad4-1, and sid2-2.
Institute
Oregon State University
DepartmentBotany and Plant Pathology
LaboratoryJeff C Anderson
Last NameRogan
First NameConner
AddressCordley Hall, 2701 SW Campus Way, Corvallis, OR 97331
Emailroganco@oregonstate.edu
Phone3146004945
Submit Date2023-08-28
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailGC-MS
Release Date2024-02-28
Release Version1
Conner Rogan Conner Rogan
https://dx.doi.org/10.21228/M8C713
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO003023
Collection Summary:Apoplastic wash fluid (AWF) was isolated from the leaves of 5- to 6-week-old Arabidopsis plants treated with flg22 or a mock control. To initiate PAMP responses, a needle-less syringe was used to infiltrate the leaves with a solution of 100 nM flg22 in water, or with DMSO in water as a negative control. Six to eight leaves were infiltrated on each plant, and a total of six plants were infiltrated for each treatment condition. Individual plants were infiltrated with flg22 or the DMSO only control, never both. After eight hours, AWF was isolated by syringe-infiltrating the mock- and flg22-treated leaves with sterile H2O containing 164 µM ribitol as an internal standard. Immediately after infiltration, the aerial portion of the plant was removed by cutting the primary stem and briefly washed with H2O to remove surface contaminants. The infiltrated leaves were detached from the rosette and stacked between layers of parafilm, with 2 to 4 leaves in each layer. The parafilm booklet of leaves was wrapped with tape and suspended inside a 15 mL conical centrifuge tube. The tube was centrifuged at 750 x g for seven minutes. The AWF that collected at the bottom of the conical tube was transferred to a clean 1.7 mL microcentrifuge tube, then centrifuged at 21,000 x g for 10 minutes at 4°C. The resulting supernatant was transferred to a clean 1.7 mL microcentrifuge tube. After addition of 50 µL of chloroform, the samples were vortexed for 10 seconds and centrifuged at 21,000 x g for 10 minutes at 4°C. The upper aqueous phase was transferred to a clean 1.7 mL microcentrifuge tube, and the volume recovered was measured with a pipette. The AWF samples were then lyophilized to dryness and stored at -80°C until further use.
Sample Type:Apoplastic washing fluid
  logo