Return to study ST001415 main page

MB Sample ID: SA116249

Local Sample ID:F_20m_3b
Subject ID:SU001489
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:C57BL/6J
Age Or Age Range:4 months & 20 months
Gender:Male and female
Animal Animal Supplier:Jackson Laboratories
Animal Housing:SPF animal facility at USC

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU001489
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:C57BL/6J
Age Or Age Range:4 months & 20 months
Gender:Male and female
Animal Animal Supplier:Jackson Laboratories
Animal Housing:SPF animal facility at USC

Factors:

Local Sample IDMB Sample IDFactor Level IDLevel ValueFactor Name
F_20m_3bSA116249FL014438FemaleSex
F_20m_3bSA116249FL014438OldAge

Collection:

Collection ID:CO001484
Collection Summary:The hindlimb bones of each mouse were harvested and kept on ice in D-PBS (Corning) supplemented with 1% Penicillin/Streptomycin (Corning) until further processing. Muscle tissue was removed from the bones, and the bone marrow from cleaned bones was collected into clean tubes (Amend et al., 2016). Red blood cells from the marrow were removed using Red Blood Cell Lysis (Miltenyi Biotech #130-094-183), according to the manufacturer’s instructions, albeit with no vortexing step to avoid unscheduled neutrophil activation. Neutrophils were isolated from other bone marrow cells using magnetic-assisted cell sorting (Miltenyi Biotech kit #130-097-658). Viability and yield were assessed using trypan blue exclusion and an automated COUNTESS cell counter (Thermo-Fisher Scientific). Purified cells were pelleted at 300g and snap-frozen in liquid nitrogen until processing for RNA, lipid or metabolite isolation.
Sample Type:Bone marrow

Treatment:

Treatment ID:TR001504
Treatment Summary:There was no treatment.

Sample Preparation:

Sampleprep ID:SP001497
Sampleprep Summary:Metabolites and lipids were extracted from neutrophil cell pellets and analyzed in a randomized order. Extraction was performed using a biphasic separation protocol with ice-cold methanol, methyl tert-butyl ether (MTBE) and water (Contrepois et al., 2018). Briefly, 300μL of methanol spiked-in with 54 deuterated internal standards provided with the Lipidyzer platform (SCIEX, cat #5040156, LPISTDKIT-101) was added to the cell pellet, samples were vigorously vortexed for 20 seconds and sonicated in a water bath 3 times for 30 seconds on ice. Lipids were solubilized by adding 1000μL of MTBE and incubated under agitation for 1h at 4°C. After addition of 250μL of ice-cold water, the samples were vortexed for 1 min and centrifuged at 14,000g for 5 min at 20°C. The upper phase containing the lipids was then collected and dried down under nitrogen. The dry lipid extracts were reconstituted with 300μL of 10 mM ammonium acetate in 9:1 methanol:toluene for analaysis. The lower phase containing metabolites was subjected to further protein precipitation by adding 4 times of ice-cold 1:1:1 isopropanol:acetonitrile:water spiked in with 17 labeled internal standards and incubating for 2 hours at -20°C. The supernatant was dried down to completion under nitrogen and re-suspended in 100μL of 1:1 MeOH:Water for analysis.

Combined analysis:

Analysis ID AN002365 AN002366 AN002367 AN002368
Analysis type MS MS MS MS
Chromatography type HILIC HILIC Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS
Column SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um)
MS Type ESI ESI ESI ESI
MS instrument type Orbitrap Orbitrap Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE
Units MS count MS count MS count MS count

Chromatography:

Chromatography ID:CH001735
Chromatography Summary:HILIC experiments were performed using a ZIC-HILIC column 2.1x100 mm, 3.5μm, 200Å (Merck Millipore) and mobile phase solvents consisting of 10mM ammonium acetate in 50/50 acetonitrile/water (A) and 10 mM ammonium acetate in 95/5 acetonitrile/water (B).(Contrepois et al., 2015)
Instrument Name:Thermo Dionex Ultimate 3000 RS
Column Name:SeQuant ZIC-HILIC (100 x 2.1mm,3.5um)
Column Temperature:40
Flow Rate:0.5 ml/min
Solvent A:95% acetonitrile/5% water; 10 mM ammonium acetate
Solvent B:95% acetonitrile/5% water; 10 mM ammonium acetate
Chromatography Type:HILIC
  
Chromatography ID:CH001736
Chromatography Summary:RPLC experiments were performed using a Zorbax SBaq column 2.1 x 50 mm, 1.7 μm, 100Å (Agilent Technologies) and mobile phase solvents consisting of 0.06% acetic acid in water (A) and 0.06% acetic acid in methanol (B). (Contrepois et al., 2015)
Instrument Name:Thermo Dionex Ultimate 3000 RS
Column Name:Agilent Zorbax SBaq (50 x 2.1mm,1.7um)
Column Temperature:60
Flow Rate:0.6 ml/min
Solvent A:100% water; 0.06% acetic acid
Solvent B:100% methanol; 0.06% acetic acid
Chromatography Type:Reversed phase

MS:

MS ID:MS002207
Analysis ID:AN002365
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002208
Analysis ID:AN002366
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002209
Analysis ID:AN002367
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002210
Analysis ID:AN002368
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  logo