Return to study ST001718 main page

MB Sample ID: SA161910

Local Sample ID:ms5520-10
Subject ID:SU001795
Subject Type:Mammal
Subject Species:Homo sapiens
Taxonomy ID:9606
Age Or Age Range:16-60
Weight Or Weight Range:NA
Height Or Height Range:NA
Gender:Male and female

Select appropriate tab below to view additional metadata details:


Subject:

Subject ID:SU001795
Subject Type:Mammal
Subject Species:Homo sapiens
Taxonomy ID:9606
Age Or Age Range:16-60
Weight Or Weight Range:NA
Height Or Height Range:NA
Gender:Male and female

Factors:

Local Sample IDMB Sample IDFactor Level IDLevel ValueFactor Name
ms5520-10SA161910FL019129controlFactor

Collection:

Collection ID:CO001788
Collection Summary:Fecal supernatants (FSNs) were made fresh prior to each experiment. Feces from patients (0.1g) or mice (1 pellet) was added to 0.8mL of phosphate buffered saline (PBS) and subsequently homogenized with a pellet pestle for 5-10 seconds (Sigma-Aldrich, St. Louis, MO, USA). Homogenates were spun twice at 5,000 g for 10 min at 4°C and then added to a 0.22 µm Spin-X tube filter (Corning Life Sciences, Durham, NC, USA). Samples were filtered at 4°C, 10,000 g for 5 min and FSN was stored on ice until use.
Sample Type:Feces

Treatment:

Treatment ID:TR001808
Treatment Summary:A total of 52 PI-IBS patients defined by Rome III criteria and 38 healthy volunteers were recruited. Those with a history of abdominal surgery (except hernia, C-section, hysterectomy, appendectomy or cholecystectomy), inflammatory bowel disease, microscopic colitis, or celiac disease were excluded. Additionally, recruited volunteers were not pregnant at the time of the study. Use of tobacco or alcohol for the duration of the study was prohibited. Following medications were prohibited 7 days prior to study participation: those affecting gastrointestinal transit, serotonergic agents, anti-cholinergic agents, antimuscarinics, narcotics, peppermint oil, antibiotics or new probiotics. Ingestion of artificial sweeteners such as SplendaTM (sucralose), Nutrasweet TM (aspartame), lactulose or mannitol was prohibited for 2 days before the start and during the study. All subjects taking part in the study were asked to complete the Hospital Anxiety and Depression Scale (HADS) and a 7-day bowel diary. All participants completed the Hospital anxiety and depression scale (HADS). PI-IBS patients also completed the Symptom Checklist-90 (SCL-90), IBS Symptom severity scale (IBS-SSS), IBS-quality of life (IBS-QoL) questionnaire as well as the Long Bowel Disease questionnaire (BDQ). Mayo Clinic Institutional Review Board approved human studies and all participants provided a written informed consent (IRB protocol: 12-006529; ClinicalTrials.gov identifier: NCT03266068).

Sample Preparation:

Sampleprep ID:SP001801
Sampleprep Summary:Fecal samples were deproteinized with six times volume of cold acetonitrile:methanol (1:1 ratio), kept on ice with intermittent vortexing for 30 minutes at 4C, then centrifuged at 18000xg. 13C6-phenylalanine (3 µl at 250ng/µl) was added as internal standard to each sample prior to deproteinization. The supernatants were divided into 2 aliquots and dried down for analysis on a Quadrupole Time-of-Flight Mass Spectrometer (Agilent Technologies 6550 Q-TOF) coupled with an Ultra High Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies). Profiling data were acquired under both positive and negative electrospray ionization conditions over a mass range of 100 - 1200 m/z at a resolution of 10,000-35,000 (separate runs). Metabolite separation was achieved using two columns of differing polarity, a hydrophilic interaction column (HILIC, ethylene-bridged hybrid 2.1 x 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column (high-strength silica 2.1 x 150 mm, 1.8 mm; Waters). For each column, the run time is 20 min using a flow rate of 400 ul/min. A total of four runs per sample will be performed to give maximum coverage of metabolites. Samples were injected in duplicate or triplicate, and a quality control sample, made up of a subset of samples from the study was injected several times during a run. All raw data files obtained were converted to compound exchange file format using Masshunter DA reprocessor software (Agilent). Mass Profiler Professional (Agilent) was used for data alignment and to convert each metabolite feature (m/z x intensity x time) into a matrix of detected peaks for compound identification.

Combined analysis:

Analysis ID AN002799 AN002800 AN002801
Analysis type MS MS MS
Chromatography type Reversed phase HILIC HILIC
Chromatography system Agilent 6550 Agilent 6550 Agilent 6550
Column Agilent DB5-MS (15m x 0.25mm,0.25um) Phenomenex Kinetex C18 (150 x 2.1mm,2.6um) Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
MS Type ESI ESI ESI
MS instrument type QTOF QTOF QTOF
MS instrument name Agilent 6550 QTOF Agilent 6550 QTOF Agilent 6550 QTOF
Ion Mode POSITIVE POSITIVE NEGATIVE
Units intensity intensity intensity

Chromatography:

Chromatography ID:CH002068
Chromatography Summary:C18 Reverse phase
Instrument Name:Agilent 6550
Column Name:Agilent DB5-MS (15m x 0.25mm,0.25um)
Flow Rate:400 ul/min
Chromatography Type:Reversed phase
  
Chromatography ID:CH002069
Chromatography Summary:HILIC
Instrument Name:Agilent 6550
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:HILIC

MS:

MS ID:MS002594
Analysis ID:AN002799
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:Fecal samples were deproteinized with six times volume of cold acetonitrile:methanol (1:1 ratio), kept on ice with intermittent vortexing for 30 minutes at 4C, then centrifuged at 18000xg. 13C6-phenylalanine (3 µl at 250ng/µl) was added as internal standard to each sample prior to deproteinization. The supernatants were divided into 2 aliquots and dried down for analysis on a Quadrupole Time-of-Flight Mass Spectrometer (Agilent Technologies 6550 Q-TOF) coupled with an Ultra High Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies). Profiling data were acquired under both positive and negative electrospray ionization conditions over a mass range of 100 - 1200 m/z at a resolution of 10,000-35,000 (separate runs). Metabolite separation was achieved using two columns of differing polarity, a hydrophilic interaction column (HILIC, ethylene-bridged hybrid 2.1 x 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column (high-strength silica 2.1 x 150 mm, 1.8 mm; Waters). For each column, the run time is 20 min using a flow rate of 400 ul/min. A total of four runs per sample will be performed to give maximum coverage of metabolites. Samples were injected in duplicate or triplicate, and a quality control sample, made up of a subset of samples from the study was injected several times during a run. All raw data files obtained were converted to compound exchange file format using Masshunter DA reprocessor software (Agilent). Mass Profiler Professional (Agilent) was used for data alignment and to convert each metabolite feature (m/z x intensity x time) into a matrix of detected peaks for compound identification.
Ion Mode:POSITIVE
  
MS ID:MS002595
Analysis ID:AN002800
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:Fecal samples were deproteinized with six times volume of cold acetonitrile:methanol (1:1 ratio), kept on ice with intermittent vortexing for 30 minutes at 4C, then centrifuged at 18000xg. 13C6-phenylalanine (3 µl at 250ng/µl) was added as internal standard to each sample prior to deproteinization. The supernatants were divided into 2 aliquots and dried down for analysis on a Quadrupole Time-of-Flight Mass Spectrometer (Agilent Technologies 6550 Q-TOF) coupled with an Ultra High Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies). Profiling data were acquired under both positive and negative electrospray ionization conditions over a mass range of 100 - 1200 m/z at a resolution of 10,000-35,000 (separate runs). Metabolite separation was achieved using two columns of differing polarity, a hydrophilic interaction column (HILIC, ethylene-bridged hybrid 2.1 x 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column (high-strength silica 2.1 x 150 mm, 1.8 mm; Waters). For each column, the run time is 20 min using a flow rate of 400 ul/min. A total of four runs per sample will be performed to give maximum coverage of metabolites. Samples were injected in duplicate or triplicate, and a quality control sample, made up of a subset of samples from the study was injected several times during a run. All raw data files obtained were converted to compound exchange file format using Masshunter DA reprocessor software (Agilent). Mass Profiler Professional (Agilent) was used for data alignment and to convert each metabolite feature (m/z x intensity x time) into a matrix of detected peaks for compound identification.
Ion Mode:POSITIVE
  
MS ID:MS002596
Analysis ID:AN002801
Instrument Name:Agilent 6550 QTOF
Instrument Type:QTOF
MS Type:ESI
MS Comments:Fecal samples were deproteinized with six times volume of cold acetonitrile:methanol (1:1 ratio), kept on ice with intermittent vortexing for 30 minutes at 4C, then centrifuged at 18000xg. 13C6-phenylalanine (3 µl at 250ng/µl) was added as internal standard to each sample prior to deproteinization. The supernatants were divided into 2 aliquots and dried down for analysis on a Quadrupole Time-of-Flight Mass Spectrometer (Agilent Technologies 6550 Q-TOF) coupled with an Ultra High Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies). Profiling data were acquired under both positive and negative electrospray ionization conditions over a mass range of 100 - 1200 m/z at a resolution of 10,000-35,000 (separate runs). Metabolite separation was achieved using two columns of differing polarity, a hydrophilic interaction column (HILIC, ethylene-bridged hybrid 2.1 x 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column (high-strength silica 2.1 x 150 mm, 1.8 mm; Waters). For each column, the run time is 20 min using a flow rate of 400 ul/min. A total of four runs per sample will be performed to give maximum coverage of metabolites. Samples were injected in duplicate or triplicate, and a quality control sample, made up of a subset of samples from the study was injected several times during a run. All raw data files obtained were converted to compound exchange file format using Masshunter DA reprocessor software (Agilent). Mass Profiler Professional (Agilent) was used for data alignment and to convert each metabolite feature (m/z x intensity x time) into a matrix of detected peaks for compound identification.
Ion Mode:NEGATIVE
  logo