Summary of Study ST002557

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001649. The data can be accessed directly via it's Project DOI: 10.21228/M8JQ50 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002557
Study TitleUntargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots
Study TypeNewborn screening
Study SummaryMedium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these methods have limitations, such as false negatives or positives in NBS and variants of uncertain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for inherited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations. We performed untargeted metabolic profiling of dried blood spots (DBS) from MCADD newborns (n=14) and healthy controls (n=14) to discover potential metabolic biomarkers/pathways associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to analyze the metabolomics data, and pathway and biomarker analyses were also performed on the significantly endogenous identified metabolites. MCADD newborns had 1034 significantly dysregulated metabolites compared to healthy newborns (Moderated t-test, no correction, p-value ≤ 0.05, FC 1.5). 23 endogenous metabolites were upregulated, while 84 endogenous metabolites were downregulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most affected pathway. Potential metabolic biomarkers for MCADD were PGP (a21:0/PG/F1alpha) and glutathione with an area under the curve (AUC) of 0.949 and 0.898, respectively. PGP (a21:0/PG/F1alpha) was the only oxidized lipid in the top-15 biomarker list with the highest p-value and FC. Also, glutathione was chosen to indicate oxidative stress events that could happen during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative stress events as signs of the disease. However, further validations of these biomarkers are needed in future studies to ensure their accuracy and reliability as complementary markers with established MCADD markers for clinical diagnosis.
Institute
King Faisal Specialist Hospital and Research Centre (KFSHRC)
Last NameAlMalki
First NameReem
AddressZahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
Email439203044@student.ksu.edu.sa
Phone0534045397
Submit Date2023-04-11
Num Groups2
Total Subjects28
Raw Data AvailableYes
Raw Data File Type(s)raw(Waters)
Analysis Type DetailLC-MS
Release Date2023-04-28
Release Version1
Reem AlMalki Reem AlMalki
https://dx.doi.org/10.21228/M8JQ50
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN004212 AN004213
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Waters Acquity Waters Acquity
Column Waters Acquity UPLC XSelect HSS C18 (100 × 2.1mm, 2.5um) Waters Acquity UPLC XSelect HSS C18 (100 × 2.1mm, 2.5um)
MS Type ESI ESI
MS instrument type QTOF QTOF
MS instrument name Waters Xevo-G2-S Waters Xevo-G2-S
Ion Mode POSITIVE NEGATIVE
Units peak area peak area
  logo