Return to study ST001415 main page

MB Sample ID: SA116258

Local Sample ID:M_4m_1a
Subject ID:SU001489
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090
Genotype Strain:C57BL/6J
Age Or Age Range:4 months & 20 months
Gender:Male and female
Animal Animal Supplier:Jackson Laboratories
Animal Housing:SPF animal facility at USC

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002365 AN002366 AN002367 AN002368
Analysis type MS MS MS MS
Chromatography type HILIC HILIC Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS
Column SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um)
MS Type ESI ESI ESI ESI
MS instrument type Orbitrap Orbitrap Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE
Units MS count MS count MS count MS count

MS:

MS ID:MS002207
Analysis ID:AN002365
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002208
Analysis ID:AN002366
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002209
Analysis ID:AN002367
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002210
Analysis ID:AN002368
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently analyzed using Progenesis QI software v2.3 (Nonlinear Dynamics). Metabolic features from blanks and that didn’t show sufficient linearity upon dilution were discarded. Only metabolic features present in >33% of the samples in each group were kept for further analysis and missing values were imputed by drawing from a random distribution of small values in the corresponding sample (Tyanova et al., 2016). Metabolic feature annotation. Annotation confidence levels for each metabolite were provided following the Metabolomics Standards Initiative (MSI) confidence scheme. Peak annotation was first performed by matching experimental m/z, retention time and MS/MS spectra to an in-house library of analytical-grade standards (level 1). Remaining peaks were identified by matching experimental m/z and fragmentation spectra to publicly available databases including HMDB (http://www.hmdb.ca/), MoNA (http://mona.fiehnlab.ucdavis.edu/) and MassBank (http://www.massbank.jp/) using the R package ‘MetID’ (v0.2.0) (PMID: 30944337) (level 2). Briefly, metabolic feature tables from Progenesis QI were matched to fragmentation spectra with a m/z and a retention time window of ±15 ppm and ±30 s (HILIC) and ± 20 s (RPLC), respectively. When multiple MS/MS spectra match a single metabolic feature, all matched MS/MS spectra were used for the identification. Next, MS1 and MS2 pairs were searched against public databases and a similarity score was calculated using the forward dot–product algorithm which takes into account both fragments and intensities. Metabolites were reported if the similarity score was above 0.4. Level 3 corresponds to unknown metabolites.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  logo