Return to study ST001681 main page

MB Sample ID: SA154673

Local Sample ID:041_25_A
Subject ID:SU001758
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606
Gender:Female

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002742 AN002743 AN002744 AN002745
Analysis type MS MS MS MS
Chromatography type HILIC HILIC Reversed phase Reversed phase
Chromatography system Thermo Vanquish Thermo Vanquish Thermo Dionex Ultimate 3000 RS Thermo Dionex Ultimate 3000 RS
Column SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) SeQuant ZIC-HILIC (100 x 2.1mm,3.5um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um) Agilent Zorbax SBaq (50 x 2.1mm,1.7um)
MS Type ESI ESI ESI ESI
MS instrument type Orbitrap Orbitrap Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode POSITIVE NEGATIVE POSITIVE NEGATIVE
Units MS Counts MS Counts MS Counts MS Counts

MS:

MS ID:MS002539
Analysis ID:AN002742
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently processed using Progenesis QI software (v2.3, Nonlinear Dynamics, Durham, NC). Metabolic features from blanks and that did not show sufficient linearity upon dilution in QC samples (r < 0.6) were discarded. Only metabolic features present in >2/3 of the samples were kept for further analysis. Inter- and intra-batch variations were corrected using the LOESS (locally estimated scatterplot smoothing Local Regression) normalization method on QC injected repetitively along the batches (span = 0.75). Data were acquired in five and three batches for HILIC and RPLC modes, respectively. Missing values were imputed by drawing from a random distribution of low values in the corresponding sample. Data from each mode were merged and resulted in a dataset containing 3,529 metabolic features that was used for downstream analysis. Metabolic features of interest were tentatively identified by matching fragmentation spectra and retention time to analytical-grade standards when possible or matching experimental MS/MS to fragmentation spectra in publicly available databases.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002540
Analysis ID:AN002743
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently processed using Progenesis QI software (v2.3, Nonlinear Dynamics, Durham, NC). Metabolic features from blanks and that did not show sufficient linearity upon dilution in QC samples (r < 0.6) were discarded. Only metabolic features present in >2/3 of the samples were kept for further analysis. Inter- and intra-batch variations were corrected using the LOESS (locally estimated scatterplot smoothing Local Regression) normalization method on QC injected repetitively along the batches (span = 0.75). Data were acquired in five and three batches for HILIC and RPLC modes, respectively. Missing values were imputed by drawing from a random distribution of low values in the corresponding sample. Data from each mode were merged and resulted in a dataset containing 3,529 metabolic features that was used for downstream analysis. Metabolic features of interest were tentatively identified by matching fragmentation spectra and retention time to analytical-grade standards when possible or matching experimental MS/MS to fragmentation spectra in publicly available databases.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 35 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002541
Analysis ID:AN002744
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently processed using Progenesis QI software (v2.3, Nonlinear Dynamics, Durham, NC). Metabolic features from blanks and that did not show sufficient linearity upon dilution in QC samples (r < 0.6) were discarded. Only metabolic features present in >2/3 of the samples were kept for further analysis. Inter- and intra-batch variations were corrected using the LOESS (locally estimated scatterplot smoothing Local Regression) normalization method on QC injected repetitively along the batches (span = 0.75). Data were acquired in five and three batches for HILIC and RPLC modes, respectively. Missing values were imputed by drawing from a random distribution of low values in the corresponding sample. Data from each mode were merged and resulted in a dataset containing 3,529 metabolic features that was used for downstream analysis. Metabolic features of interest were tentatively identified by matching fragmentation spectra and retention time to analytical-grade standards when possible or matching experimental MS/MS to fragmentation spectra in publicly available databases.
Ion Mode:POSITIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  
MS ID:MS002542
Analysis ID:AN002745
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data processing. Data from each mode were independently processed using Progenesis QI software (v2.3, Nonlinear Dynamics, Durham, NC). Metabolic features from blanks and that did not show sufficient linearity upon dilution in QC samples (r < 0.6) were discarded. Only metabolic features present in >2/3 of the samples were kept for further analysis. Inter- and intra-batch variations were corrected using the LOESS (locally estimated scatterplot smoothing Local Regression) normalization method on QC injected repetitively along the batches (span = 0.75). Data were acquired in five and three batches for HILIC and RPLC modes, respectively. Missing values were imputed by drawing from a random distribution of low values in the corresponding sample. Data from each mode were merged and resulted in a dataset containing 3,529 metabolic features that was used for downstream analysis. Metabolic features of interest were tentatively identified by matching fragmentation spectra and retention time to analytical-grade standards when possible or matching experimental MS/MS to fragmentation spectra in publicly available databases.
Ion Mode:NEGATIVE
Capillary Temperature:375C
Capillary Voltage:3.4kV
Collision Energy:25 & 50 NCE
Collision Gas:N2
Dry Gas Temp:310C
  logo