Return to study ST003064 main page

MB Sample ID: SA331979

Local Sample ID:R_cont_3
Subject ID:SU003179
Subject Type:Plant
Subject Species:Amaranthus caudatus L.
Taxonomy ID:3567
Gender:Not applicable

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN005019 AN005020
Analysis type MS MS
Chromatography type GC GC
Chromatography system Shimadzu GC-2010 Shimadzu GC-2010
Column Phenomenex ZB-5MS (30 m × 0.25 mm, 0.25 μm) Phenomenex ZB-5MS (30 m × 0.25 mm, 0.25 μm)
MS Type EI EI
MS instrument type Single quadrupole Single quadrupole
MS instrument name Shimadzu QP2010 Plus Shimadzu QP2010 Plus
Ion Mode POSITIVE POSITIVE
Units peak areas μmol/g DW

MS:

MS ID:MS004758
Analysis ID:AN005019
Instrument Name:Shimadzu QP2010 Plus
Instrument Type:Single quadrupole
MS Type:EI
MS Comments:Targeted GC-MS analysis The samples (1μL) were injected with CTC GC PAL Liquid Injector (Shimadzu Deutschland GmbH, Duisburg, Germany) into GC2010 gas chromatograph coupled online to a quadrupole mass selective detector Shimadzu GCMS QP201. The GC-MS instrumental settings are summarized in PR_2.pdf. The quality of the acquired chromatograms was assessed by verification of the baseline regularity, background MS noise, the symmetry, width and height of chromatographic peaks. To obtain qualitative information about the Zn-related dynamics of individual metabolites, the chromatograms were processed by AMDIS software (www.amdis.net/) to accomplish deconvolution of mass spectra, peak picking, calculation of Kovach retention indices (RI) and annotation of analytes. The analytes annotated in the experimental samples were quantified by integration of the corresponding extracted ion chromatograms (XIC, m/z ± 0.5 Da) for representative intense signals at specific retention times. This analyte quantification procedure was accomplished with XcaliburTM (version 2.0.7), LCquanTM (version 2.5.6, TermoFisher Scientific Inc., Bremen, Germany) and MSDial (http://prime.psc.riken.jp/compms/msdial/main.html) softwares which perform alignment of chromatograms by retention times of analytes and the integration of analyte peak areas. Metabolite identification and targeted absolute quantitative analysis relied on external standardization with 29 authentic standards (oxalic acid, malonic acid, succinic acid, tartaric acid, malic acid, aconitic acid, citric acid, fumaric acid, benzoic acid, ascorbic acid, erythronic acid, glycerol, arabinose, glucose, galactose, myo-inositol, sucrose, urea, Ala, Trp, Ile, Leu, Asn, Asp, Glu, Pro, Val, Ser, Thr) prepared as a total mix serially diluted in the range from 0.2 pmol/μL to 200 pmol/μL. Among these, only 21 compounds were confirmed in leaves and roots of control and Zn2+-treated A. caudatus plants (Result table).
Ion Mode:POSITIVE
Ion Source Temperature:240
Ionization:EI
Ionization Energy:70eV
  
MS ID:MS004759
Analysis ID:AN005020
Instrument Name:Shimadzu QP2010 Plus
Instrument Type:Single quadrupole
MS Type:EI
MS Comments:Untargeted GC-MS analysis The samples (1μL) were injected with CTC GC PAL Liquid Injector (Shimadzu Deutschland GmbH, Duisburg, Germany) into GC2010 gas chromatograph coupled online to a quadrupole mass selective detector Shimadzu GCMS QP201 operating under the settings summarized in PR_2.pdf. The quality of the acquired chromatograms was assessed by verification of the baseline regularity, background MS noise, the symmetry, width and height of chromatographic peaks. The chromatograms were processed by AMDIS software (www.amdis.net/) to accomplish deconvolution of mass spectra, peak picking, calculation of Kovach retention indices (RI) and annotation of analytes. The further analysis relied on the untargeted approach, i.e. unbiased TIC-based identification of all signals with the signal to noise ratio (S/N) ≥ 3 and relative quantification via direct comparison of individual analyte abundances, derived as integral areas of corresponding peaks in extracted ion chromatograms built for characteristic signals (XIC, m/z ± 0.5 Da) in EI mass spectra. For this, the trimethylsilyl (TMS) and methyl oxime (MEOX)-TMS derivatives underlying all detected individual chromatographic peaks were annotated by retention indexes (calculated by retention time of C8–C20 alkanes, and EI-MS data - the results of spectral similarity search against available EI-MS spectral libraries such as NIST (https://webbook.nist.gov/chemistry/), GMD (http://gmd.mpimp-golm.mpg.de/), HMDB (https://hmdb.ca/), RIKEN Center for Sustainable Resource Science (http://prime.psc.riken.jp/Metabolomics Software/MS-DIAL/) and in-house spectral library. The quantitation results (i.e. integrated peak areas detected in each sample) were organized into a digital matrix, normalized to the dry weights of the samples, filtered to exclude the features not detected in ≥ 20% of the samples, and processed by statistical methods using the Metaboanalyst 5.0 (https://www.metaboanalyst.ca/).
Ion Mode:POSITIVE
Ion Source Temperature:240
Ionization:EI
Ionization Energy:70eV
  logo