Summary of Study ST003179

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001978. The data can be accessed directly via it's Project DOI: 10.21228/M8214C This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003179
Study TitleProperty and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4
Study SummaryThe development of new antimalarial classes is pertinent because of resistance against the current antimalarial treatments. To contribute to the global effort to create new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. The preliminary optimization generated analogs, such as 4, that exhibited potent in vitro asexual stage activity but only showed modest oral efficacy in a P. berghei mouse model attributed to its low aqueous solubility and modest metabolic stability. Here we report on correcting these parameters to improve in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold markedly improved aqueous solubility without a significant loss of asexual parasite activity. Certain configurations of pyrazoles in the 8-position were found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability. We were able to show that modifications made to the optimized analogs, such as WJM992 did not perturb the sensitivity to PfATP4 drug-resistant parasites or alter on-target activity in a PfATP4-associated parasite cytosolic Na+ flux assay and gave a distinct metabolic signature indicative of other PfATP4 inhibitors. The optimized analogs showed an appreciable efficacy in malaria mouse models and blocked sexual stage gamete development preventing transmission to mosquitoes.
Institute
Monash University
Last NameGiannangelo
First NameCarlo
Address381 Royal Parade, Parkville, Victoria, 3052, Australia
Emailcarlo.giannangelo@monash.edu
Phone99039282
Submit Date2024-04-23
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-05-15
Release Version1
Carlo Giannangelo Carlo Giannangelo
https://dx.doi.org/10.21228/M8214C
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN005221 AN005222
Analysis type MS MS
Chromatography type HILIC HILIC
Chromatography system Thermo Vanquish Thermo Vanquish
Column Merck SeQuant ZIC-pHILIC (150 x 4.6mm,5um) Merck SeQuant ZIC-pHILIC (150 x 4.6mm,5um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Orbitrap Exploris 120 Thermo Orbitrap Exploris 120
Ion Mode POSITIVE NEGATIVE
Units Peak height Peak height

MS:

MS ID:MS004954
Analysis ID:AN005221
Instrument Name:Thermo Orbitrap Exploris 120
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data were acquired as a full scan in positive and negative ionization modes with a heated electrospray source and an Orbitrap resolution of 120,000 from 70 to 1,050 m/z. Ion source voltage was 3,500 V in positive mode and 2,500 V in negative mode. The ion transfer tube temperature was 325 °C and the vaporizer temperature was 350 °C. Gas mode was set to static with sheath gas, aux gas, and sweep gas at 50, 10, and 1, respectively. Samples within the LC-MS batch were sorted according to blocks of replicates and randomized. To facilitate metabolite identification, approximately 350 authentic metabolite standards were analyzed before the LC-MS batch, and their peaks and retention time were manually checked using the MZmine software. Pooled biological quality control samples and extraction solvent blanks were analyzed periodically throughout the batch to monitor LC-MS signal reproducibility and assist metabolite identification procedures. Raw LC-MS metabolomics data were analysed using the open source software, IDEOM (http://mzmatch.sourceforge.net/ideom.php). Briefly, the IDEOM workflow uses msconvert to convert raw files to mzXML format, XCMS (Centwave) to pick LC-MS peak signals, and MZmatch for alignment and annotation of related metabolite peaks. Default IDEOM parameters were used to eliminate unwanted noise and artifact peaks. Confident metabolite identification was made by matching accurate masses to the retention time of the ~350 authentic standards. When these authentic standards were unavailable, putative metabolite identification used accurate mass and predicted retention times, as previously described. Metabolite abundance was represented by LC-MS peak height.
Ion Mode:POSITIVE
  
MS ID:MS004955
Analysis ID:AN005222
Instrument Name:Thermo Orbitrap Exploris 120
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Data were acquired as a full scan in positive and negative ionization modes with a heated electrospray source and an Orbitrap resolution of 120,000 from 70 to 1,050 m/z. Ion source voltage was 3,500 V in positive mode and 2,500 V in negative mode. The ion transfer tube temperature was 325 °C and the vaporizer temperature was 350 °C. Gas mode was set to static with sheath gas, aux gas, and sweep gas at 50, 10, and 1, respectively. Samples within the LC-MS batch were sorted according to blocks of replicates and randomized. To facilitate metabolite identification, approximately 350 authentic metabolite standards were analyzed before the LC-MS batch, and their peaks and retention time were manually checked using the MZmine software. Pooled biological quality control samples and extraction solvent blanks were analyzed periodically throughout the batch to monitor LC-MS signal reproducibility and assist metabolite identification procedures. Raw LC-MS metabolomics data were analysed using the open source software, IDEOM (http://mzmatch.sourceforge.net/ideom.php). Briefly, the IDEOM workflow uses msconvert to convert raw files to mzXML format, XCMS (Centwave) to pick LC-MS peak signals, and MZmatch for alignment and annotation of related metabolite peaks. Default IDEOM parameters were used to eliminate unwanted noise and artifact peaks. Confident metabolite identification was made by matching accurate masses to the retention time of the ~350 authentic standards. When these authentic standards were unavailable, putative metabolite identification used accurate mass and predicted retention times, as previously described. Metabolite abundance was represented by LC-MS peak height.
Ion Mode:NEGATIVE
  logo