Summary of Study ST003254

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR002020. The data can be accessed directly via it's Project DOI: 10.21228/M8HC1Q This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)
Study IDST003254
Study TitleThe impact of grass- and grain-finishing on metabolomic profiles of North American Black Angus Beef cattle.
Study SummaryThe goal of this study was to compare meat metabolomes (pectoralis profundus) of Black Angus cattle from two commercial US beef finishing systems (pasture-finished on Western U.S. rangeland; n=18 and grain-finished in a Midwest U.S. feedlot; n=18).
Institute
Duke University
DepartmentSchool of Medicine
LaboratoryDuke Molecular Physiology Institute
Last Namevan Vliet
First NameStephan
Address300 N Duke St, Durham, NC 27701
Emailstephan.vanvliet@usu.edu
Phone2177785001
Submit Date2024-06-05
Num Groups2
Total Subjects36
Analysis Type DetailOther
Release Date2024-06-18
Release Version1
Stephan van Vliet Stephan van Vliet
https://dx.doi.org/10.21228/M8HC1Q
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP003380
Sampleprep Summary:Samples analyzed for untargeted metabolomic profiling through collaborations with Metabolon (Morrisville, NC). One hundred (100 mg) was weighed out for each sample and recovery standards were added for quality control purposes. Proteins were subsequently precipitated with methanol under vigorous shaking for 2 min (Glen Mills Geno Grinder 2000, Clifton, NJ, USA) followed by centrifugation (15,000 × g). The resulting extract was divided into five fractions: two for analysis by separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample for backup. Sample extracts were placed briefly on a TurboVap (Zymark) to remove the organic solvent and reconstituted in mobile phases described below. The UPLC-MS/MS platform utilized a Waters Acquity UPLC with Waters UPLC BEH C18-2.1×100 mm, 1.7 μm columns and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer. One aliquot was analyzed using acidic positive ion conditions, which was chromatographically optimized for more hydrophilic compounds. The extract was gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). The second aliquot was also analyzed using acidic positive ion conditions; however, it was chromatographically optimized for more hydrophobic compounds. The extract was gradient eluted from the same C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA. The third aliquot was analyzed using basic negative ESI-optimized conditions using a separate dedicated C18 column. The basic extracts were gradient eluted from the column using methanol and water with 6.5 mmol/L Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ESI following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10 mmol/L Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion, while the scan range covered m/z 70–1000 at a resolving power of R=35,000 optimized at fifty percent of the maximum peak height (FWHM). Metabolites were identified by automated comparison of the ion features in the samples to a reference library of chemical standard entries that considered the retention time, molecular weight (m/z), preferred adducts, in-source fragments, and associated MS spectra77. The data were curated by visual inspection for quality control using Metabolon’s proprietary software. Library matches for each compound were checked for each sample and corrected if necessary. Peaks were quantified using area-under-the-curve. A data normalization step was performed to correct for variation resulting from instrument inter-day tuning differences by setting the medians to equal one (1.00) and normalizing each data point proportionately (termed “block correction”). This preserved variation between samples while allowing metabolites of different raw peak areas to be compared on a similar graphical scale.
Processing Storage Conditions:On ice
Extraction Method:Methanol and methanol/water/dichloromethane
Extract Storage:On ice
Sample Spiking:Deuterated standards
  logo