Summary of Study ST002186

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001393. The data can be accessed directly via it's Project DOI: 10.21228/M8NT4K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002186
Study TitleAn early-life microbiota metabolite protects against obesity via intestinal PPAR-gamma
Study Typeuntargeted metabolomics analysis
Study SummaryThe mechanisms by which the early-life microbiota protects against environmental factors that promote childhood obesity remain largely unknown. Using a mouse model in which young mice are simultaneously exposed to antibiotics and a high-fat diet, we show that Lactobacillus species, predominant members of the small intestine microbiota, regulate intestinal epithelial cells (IECs) to limit diet-induced obesity during early-life. A Lactobacillus-derived metabolite, phenyllactic acid (PLA), protected against metabolic dysfunction caused by early-life exposure to antibiotics and a high-fat diet by increasing the abundance of peroxisome proliferator activated receptor gamma (PPAR-gamma) in the small intestine IECs. Therefore, PLA is a microbiota-derived metabolite that activates protective pathways in the small intestine epithelium to regulate fat absorption and prevent obesity during early life.
Institute
Vanderbilt University
DepartmentChemistry
LaboratoryCenter for Innovative Technology
Last NameCodreanu
First NameSimona Gabriella
Address1234 Stevenson Center Lane
EmailSIMONA.CODREANU@VANDERBILT.EDU
Phone6158758422
Submit Date2022-06-03
Num Groups4
Total Subjects20
Num Males20
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2023-06-06
Release Version1
Simona Gabriella Codreanu Simona Gabriella Codreanu
https://dx.doi.org/10.21228/M8NT4K
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP002278
Sampleprep Summary:Frozen mouse intestinal content samples (n=20, 5 biological replicates for each sample group) were lysed in 500 µl ice-cold lysis buffer (1:1:2, v:v:v, acetonitrile: methanol: ammonium bicarbonate 0.1M - pH 8.0) and sonicated individually using a probe tip sonicator at 50% power (10 pulses). The lysis buffer contained isotopically labeled standards (n=2) to determine sample process variability. Homogenized samples were normalized by weight to the smallest amount of tissue sample such that each sample contained an equal amount of tissue. Proteins were precipitated from individual samples by addition of 800 µL of ice-cold methanol followed by overnight incubation at -80°C. Precipitated proteins were pelleted by centrifugation (15,000 rpm, 15 min) and metabolite extracts were dried down in vacuo and stored at -80°C. Individual samples were reconstituted in 100 μL of reverse phase liquid chromatography reconstitution buffer (acetonitrile/water with 0.1% formic acid, 3:97, v/v) containing isotopically labeled standards (n=2) to assess instrument variability. A pooled quality control (QC) sample was prepared by pooling equal volumes (10 μL) from each individual sample following reconstitution.
Processing Storage Conditions:-80℃
Extraction Method:Following lysis and standard addition, protein precipitation was performed by adding 800µL of ice-cold methanol (4x by volume). Samples were incubated at -80°C overnight. Following incubation, samples were centrifuged at 10,000 rpm for 10 min to eliminate proteins. The supernatants containing metabolites were dried via speed-vacuum.
Extract Storage:-80℃
  logo