Summary of project PR000079

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000079. The data can be accessed directly via it's Project DOI: 10.21228/M82S3K This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR000079
Project DOI:doi: 10.21228/M82S3K
Project Title:A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytes
Project Type:timecourse study
Project Summary:A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytestimecourse studyThis West Coast Metabolomics Center pilot and feasibility project was granted to Ernst Lengyel  (University of Chicago). The biology of ovarian cancer (OvCa) is clearly distinct from that of most epithelial tumors, in that hematogenous metastases are rare, and ovarian tumors remain confined to the peritoneal cavity. The omentum, a large pad of fat tissue (20x13x3cm) covering the bowel, is the most common site of OvCa metastasis. It consists primarily of adipocytes, which become the principal microenvironment for the OvCa cells. The underlying hypothesis for this application is that, in the presence of adipocytes, the metabolism of OvCa cells is reprogramed and shifts towards lipid utilization, which provides energy that facilitates tumor growth and metastasis. Preliminary results suggest that primary human omental adipocytes secrete cytokines which promote the metastasis of OvCa cells to the omentum and their subsequent invasion. Once metastasis has occurred, OvCa cells induce lipolysis in omental adipocytes, and use the energy derived from these lipids to proliferate. To study the metabolic changes in the tumor microenvironment we have established a 3D organotypic culture of the human omentum using primary human cells established from patient tissue. Metabolic studies will be performed on adipocytes and OvCa cells individually, on conditioned media and on adipocytes and OvCa cells co-cultured in our 3D model, with the goal of arriving at a comprehensive analysis of primary metabolites and lipids in the tumor microenvironment. In the current investigation, untargeted analysis of primary metabolites and complex lipids were conducted on adipocytes and OvCa cells individually, on conditioned media and on adipocytes and OvCa cells co-cultured in our 3D model. Analysis of oxylipins was conducted on conditioned media. To gain better understanding of the dynamic regulation of metabolic pathways we will also perform metabolic flux analysis using labeled cells (13C-glucose, 13C-glutamine) in the 3D culture model. The primary objective of this study is to gain insight into the dynamic interactions between OvCa cells and human adipocytes with the anticipation of elucidating targets of therapeutic intervention.
Institute:University of California, Davis
Department:Genome and Biomedical Sciences Facility
Laboratory:WCMC Metabolomics Core
Last Name:Fiehn
First Name:Oliver
Address:1315 Genome and Biomedical Sciences Facility,451 Health Sciences Drive, Davis, CA 95616
Email:ofiehn@ucdavis.edu
Phone:(530) 754-8258
Funding Source:NIH U24DK097154

Summary of all studies in project PR000079

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST000087 A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytes: GC-TOF MS analysis Homo sapiens University of California, Davis MS 2014-09-18 1 81 Uploaded data (2G)*
ST000089 A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytes: UHPLC-QTOF MS analysis Homo sapiens University of California, Davis MS 2014-09-18 1 50 Uploaded data (11.1G)*
ST000096 A study of changes in lipid metabolism of ovarian cancer cells co-cultured with adipocytes: UPLC-QTRAP MS analysis Homo sapiens University of California, Davis MS 2015-02-03 1 44 Uploaded data (29.8M)*
  logo