Summary of project PR000963

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000963. The data can be accessed directly via it's Project DOI: 10.21228/M86X2T This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR000963
Project DOI:doi: 10.21228/M86X2T
Project Title:Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach
Project Type:Pilot Study
Project Summary:Background: Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues. Aim: We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome. Methods: We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p’-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways. Results: Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for >80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism. Conclusions: Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations. Keywords: persistent organic pollutants, adipose tissue, liver, bariatric surgery, exposome, high-resolution metabolomics
Institute:Icahn School of Medicine at Mount Sinai
Department:Environmental Medicine and Public Health
Laboratory:High Resolution Exposomics Research Group
Last Name:Walker
First Name:Douglas
Address:One Gustave L. Levy Place, Box 1057, New York, NY 10029
Email:douglas.walker@mssm.edu
Phone:212-241-9891
Funding Source:NIEHS: R21ES028903, R21ES029328, R21ES029681, R01ES029944, R01ES030364, U2CES026561, U2CES030163, P30ES023515, P30 ES019776, P30ES007048, P01ES022845, R01ES024946; EPA: RD-83544101
Publications:Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L. (2020). Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. Environment International. In Press.
Contributors:Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L

Summary of all studies in project PR000963

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST001406 Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach (part-II) Homo sapiens Icahn School of Medicine at Mount Sinai MS 2021-06-19 1 33 Uploaded data (23G)*
ST001407 Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach Homo sapiens Icahn School of Medicine at Mount Sinai MS* 2021-06-19 1 21 Uploaded data (5.7G)*
  logo