Summary of project PR001753

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001753. The data can be accessed directly via it's Project DOI: 10.21228/M8413M This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR001753
Project DOI:doi: 10.21228/M8413M
Project Title:Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways
Project Summary:Reprogramming of cellular metabolism is a hallmark of cancer. Altering metabolism allows cancer cells to overcome unfavorable microenvironment conditions and to increase and invade. Medulloblastoma is the most common malignant brain tumor in children. Genomic amplification of MYC defines a subset of poor-prognosis medulloblastoma. We performed comprehensive metabolic studies of human MYC-amplified medulloblastoma by comparing the metabolic profiles of tumor cells in three different conditions—in vitro, in flank xenografts, and orthotopic xenografts in the cerebellum. Principal component analysis showed that the metabolic profiles of brain and flank high-MYC medulloblastoma tumors clustered closely together and separated away from the normal brain and in vitro MYC-amplified cells. Compared to typical brains, MYC-amplified medulloblastoma orthotopic xenograft tumors showed upregulation of the TCA cycle and the synthesis of nucleotides, hexosamines, amino acids, and glutathione. There was significantly higher glucose uptake and usage in orthotopic xenograft tumors compared to flank xenograft tumors and cells in culture. In orthotopic tumors, glucose was the primary carbon source for the de novo synthesis of glutamate, glutamine, and glutathione through the TCA cycle. In vivo, the glutaminase II pathway was the main pathway utilizing glutamine. Glutathione was the most abundant upregulated metabolite in orthotopic tumors compared to normal brains. Glutamine-derived glutathione was synthesized through the glutamine transaminase K (GTK) enzyme in vivo. In conclusion, high MYC medulloblastoma cells have different metabolic profiles in vitro compared to in vivo, and critical vulnerabilities may be missed by not performing in vivo metabolic analyses.
Institute:Johns Hopkins
Last Name:Pham
First Name:Khoa
Address:600 N. Wolfe Street, Pathology Bldg., Rm. 401, Baltimore, Maryland, 21287, USA
Email:kpham8@jhmi.edu
Phone:4109553439

Summary of all studies in project PR001753

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST002806 Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways Homo sapiens Johns Hopkins University MS* 2023-08-20 1 98 Uploaded data (2.6G)*
  logo