Summary of project PR001825

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001825. The data can be accessed directly via it's Project DOI: 10.21228/M8T714 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR001825
Project DOI:doi: 10.21228/M8T714
Project Title:Metabolic profiling of newborn DBS samples associated with transit and false elevation of glutarylcarnitine (C5DC)
Project Summary:Background: Glutaric aciduria type-1 (GA-1) is a rare autosomal recessive metabolic disorder caused by a glutaryl coenzyme A dehydrogenase (GCDH) deficiency, affecting approximately 1 in 110,000 individuals globally. This enzymatic deficiency leads to abnormal elevations of glutaryl-CoA and its derivatives, specifically glutaric acid (GA), 3-hydroxyglutaric acid (3OHGA), and glutarylcarnitine (C5DC). Clinical manifestations encompass macrocephaly, developmental delays, and movement disorders. Early detection via genetic testing and newborn screening (NBS), utilizing GA-1 biomarkers in dried blood spot (DBS) samples, is vital for prompt intervention. Despite the NBS system, transit-elevated C5DC-containing DBS samples from falsely suspected GA-1 newborns sometimes yield normal results, posing diagnostic sensitivity and specificity challenges. Consequently, there is a growing need for alternative diagnostic tools. Comprehensive mass spectrometry-based untargeted metabolomics offers promise in identifying additional informative biomarkers for distinguishing falsely suspected GA-1 newborns from healthy counterparts. Methodology: In this prospective study, we obtained DBS samples with transit-elevated C5DC levels from falsely suspected GA-1 newborns (n=47) and matched control DBS samples from healthy newborns (n=47) through the NBS program. Metabolites were extracted and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Subsequent multivariate and univariate statistical analyses and feature annotation enabled biomarker and pathway investigations for significantly altered metabolites. Results: Untargeted metabolomics analysis revealed alterations in 582 upregulated and 546 downregulated metabolites. The commonly used GA-1 biomarkers, including C5DC, exhibited no significant changes in the falsely suspected GA-1 DBS samples. Conversely, 155 endogenous metabolites displayed significant variations compared to the control group. Furthermore, our data identified novel altered metabolic biomarkers, such as N-Palmitoylcysteine, 3-hydroxylinoleoylcarnitine, Heptacarboxyporphyrin, and MG (0:0/20:1/0:0), along with perturbed metabolic pathways like sphingolipid and thiamine metabolism associated with the transient and falsely elevated C5DC levels in DBS samples. Conclusions: Our untargeted metabolomics investigation unveiled distinct metabolic pathways and biomarkers linked to the transient C5DC elevation in DBS samples from falsely suspected GA-1 newborns. These findings can enhance GA-1 diagnosis by serving as predictive indicators during NBS analysis. Validation studies are warranted to confirm the presence of these newly identified metabolic pathways and biomarkers in confirmed GA-1 cases.
Institute:King Faisal Specialist Hospital and Research Centre (KFSHRC)
Last Name:Al Mogren
First Name:Maha
Address:Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
Email:mahamogren@gmail.com
Phone:966541205332

Summary of all studies in project PR001825

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST002934 Metabolic profiling of newborn DBS samples associated with transit and false elevation of glutarylcarnitine (C5DC) Homo sapiens King Faisal Specialist Hospital and Research Centre (KFSHRC) MS* 2024-04-02 1 94 Uploaded data (366.3G)*
  logo