Summary of project PR001864

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001864. The data can be accessed directly via it's Project DOI: 10.21228/M8S425 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR001864
Project DOI:doi: 10.21228/M8S425
Project Title:Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis
Project Summary:Background: Metritis is a prevalent uterine disease that affects the welfare, fertility, and survival of dairy cows. The uterine microbiome from cows that develop metritis and those that remain healthy do not differ from calving until 2 days after calving, after which there is a dysbiosis of the uterine microbiome characterized by a shift towards opportunistic pathogens such as Fusobacteriota and Bacteroidota. Whether these opportunistic pathogens proliferate and overtake the uterine commensals could be determined by the type of substrates present in the uterus. The objective of this study was to integrate uterine metabolome and microbiome data to advance the understanding of metritis development in dairy cows. Holstein cows (n = 104) had uterine fluid collected at calving and at the day of metritis diagnosis. Cows with metritis (n = 52) were paired with cows without metritis (n = 52) based on days after calving. First, the uterine metabolome and microbiome were evaluated individually, and then integrated using network analyses. Results: The uterine metabolome differed both at calving and on the day of metritis diagnosis between cows with and without metritis. The uterine microbiome did not differ at calving but differed on the day of metritis diagnosis between cows with and without metritis. Omics integration was performed between 153 significant metabolites and 6 significant bacteria genera on the day of metritis diagnosis. A total of 49 metabolites were correlated with 3 bacteria genera (i.e. Fusobacteria, Porphyromonas and Bacteroides) on the day of metritis diagnosis. The main metabolites have been associated with attenuation of biofilm formation by commensal bacteria, pathogenic bacterial overgrowth, defense mechanisms against the immune system, tissue damage and inflammation, and immune dysregulation. Conclusions: The data integration presented herein helps advance the understanding of metritis development in dairy cows. The identified metabolites may be promising targets for future interventions aiming to reduce pathogenic bacterial growth in the uterus, and therefore, reducing the incidence of metritis.
Institute:University of Florida
Department:Large Animal Clinical Sciences
Last Name:Segundo
First Name:Casaro
Address:117 Deriso Hall, 2015 SW 16th Ave., Gainesville, FL 32610
Email:segundocasaro@ufl.edu
Phone:3522844016

Summary of all studies in project PR001864

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST002994 Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis Bos taurus University of Florida MS 2024-03-01 1 208 Not available
  logo