Summary of project PR001958

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001958. The data can be accessed directly via it's Project DOI: 10.21228/M8MX5P This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Project ID: PR001958
Project DOI:doi: 10.21228/M8MX5P
Project Title:Impact of early-life exposure to a potent aryl hydrocarbon receptor ligand on gut microbiota and host glucose homeostasis in C57BL/6J male mice
Project Summary:This study aimed to explore the association between early-life exposure to a potent aryl hydrocarbon receptor (AHR) agonist and persistent disruptions in the microbiota, leading to impaired metabolic homeostasis later in life. This study utilized metagenomics, NMR- and mass spectrometry-based metabolomics, and biochemical assays to analyze the gut microbiome composition and function, as well as the physiological and metabolic effects of early-life exposure to 2,3,7,8-tetrachlorodibenzofuran (TCDF) in conventional, germ-free (GF), and Ahr-null mice. The impact of TCDF on Akkermansia muciniphila (A. muciniphila) in vitro was assessed using optical density (OD 600), flow cytometry, transcriptomics, and mass spectrometry-based metabolomics. TCDF-exposed mice exhibited disruption in the gut microbiome community structure and function, characterized by lower abundances of A. muciniphila, lower levels of cecal short chain fatty acids (SCFAs) and indole-3-lactic acid (ILA), and a reduction in gut hormones GLP-1 and PYY. Importantly, microbial and metabolic phenotypes associated with early-life POP exposure were transferable to GF recipients in the absence of POP carry-over. In addition, AHR-independent interactions between POPs and the microbiota were observed, significantly affected the growth, physiology, gene expression, and metabolic activity of A. muciniphila, resulting in suppressed activity along the ILA pathway.
Institute:Pennsylvania State University
Department:Department of Veterinary and Biomedical Sciences
Last Name:Koo
First Name:Imhoi
Address:307B Life Science Building
Email:iuk41@psu.edu
Phone:+1 814-865-7803

Summary of all studies in project PR001958

Study IDStudy TitleSpeciesInstituteAnalysis
(* : Contains Untargted data)
Release
Date
VersionSamplesDownload
(* : Contains raw data)
ST003149 Impact of early-life exposure to a potent aryl hydrocarbon receptor ligand on gut microbiota and host glucose homeostasis in C57BL/6J male mice (Part I) Mus musculus Pennsylvania State University NMR 2024-04-30 1 142 Uploaded data (80.3M)*
ST003150 Impact of early-life exposure to a potent aryl hydrocarbon receptor ligand on gut microbiota and host glucose homeostasis in C57BL/6J male mice (Part II) Mus musculus Pennsylvania State University MS 2024-04-30 1 36 Uploaded data (348.7M)*
  logo