Summary of project PR001973
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001973. The data can be accessed directly via it's Project DOI: 10.21228/M8PQ8C This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
Project ID: | PR001973 |
Project DOI: | doi: 10.21228/M8PQ8C |
Project Title: | Assessment and partial characterization of candidate genes in dihydrochalcone and arbutin biosynthesis in an apple-pear hybrid by de novo transcriptome assembly |
Project Summary: | The goal of the study was to determine the phenolic profile of young and old leaves, as well as fruit of apple (Malus x domestica), pear (Pyrus communis) and an intergeneric apple-pear hybrid. Three independent replicates were obtained for each genotype from the germplasm collection at Fondazione Edmund Mach (Italy) and analyzed by a phenolic targeted LC/MS-MS method. In addition, candidate genes retrieved from a de novo transcriptome assembly were tested in recombinant proteins (n = 3) to determine the conversion of hydroquinone to arbutin. Combining RNA-Seq, in silico functional annotation prediction, targeted gene expression analysis and expression – metabolite correlations with the data submitted to Metabolomics Workbench, we identified candidate genes for functional characterisation, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. We found that the putative arbutin synthases of pear (PcAS) and apple-pear hybrid (HybAS) were able to convert hydroquinone into arbutin. Interestingly, also one out of two putative arbutin synthases isolated from apple (MdAS1) could produce arbutin in vitro. However, the metabolomic profiling of phenolic compounds showed that apple lacks of arbutin and was found to accumulate the precursor hydroquinone in traces in young and old leaves of apple. Although quercetin was accumulated in similar amounts in the same tissues, a luminiscence-based assay showed that quercetin was converted only 25% compared to activity towards hydroquinone in the tested conditions. In summary, the metabolomic profiling submitted to Metabolomics workbench also shows that: 1) arbutin is accumulated mainly in young leaves of pear, followed by the apple-pear hybrid and was found in traces in apple fruit; 2) rutin was found mainly in pear and apple-pear hybrid tissues; 3) phenolic profile of apple is dominated by phloridzin and undetectable in all pear tissues analyzed, with young leaves being the tissue showing highest accumulation. |
Institute: | Fondazione Edmund Mach |
Last Name: | Miranda Chavez |
First Name: | Simon David |
Address: | Via Mach, 1, San Michele all'Adige, Trento, 38098, Italy |
Email: | simondavid.mirandachavez@fmach.it |
Phone: | +390461615231 |
Summary of all studies in project PR001973
Study ID | Study Title | Species | Institute | Analysis(* : Contains Untargted data) | Release Date | Version | Samples | Download(* : Contains raw data) |
---|---|---|---|---|---|---|---|---|
ST003173 | Assessment and partial characterization of candidate genes in dihydrochalcone and arbutin biosynthesis in an apple-pear hybrid by de novo transcriptome assembly | Malus domestica;Pyrus communis;Apple-pear intergeneric hybrid | Fondazione Edmund Mach | MS | 2024-05-03 | 1 | 39 | Uploaded data (408.3M)* |