Summary of study ST000316

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000255. The data can be accessed directly via it's Project DOI: 10.21228/M8TG7T This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  |  Download all metabolite data  |  Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data (Contains raw data)
Study IDST000316
Study TitleComparison of Metabolites Variation and Antiobesity Effects of a Mixture of Cudrania tricuspidata, Lonicera caerulea, and the Soybean According to Fermentation in vitro and in vivo
Study SummaryWe used ultra-performance-liquid-chromatography with quadrupole-time-of-flight mass spectrometry to study the changes in metabolites in the mixture of Cudrania tricuspidata, Lonicera caerulea, and soybean (CLM) during fermentation. Additionally, the antiobesity effects of CLM and fermented-CLM (FCLM) were studied based on the analysis of plasma from high-fat diet (HFD)-fed mice. The levels of cyanidin and the glycosides of luteolin, quercetin, and cyanidin derived from L. caerulea were decreased, whereas the levels of luteolin and quercetin were increased during fermentation. Isoflavone glycosides and soyasaponins originating from the soybean were decreased, whereas their aglycones such as daidzein, glycitein, and genistein were increased. As for prenylated flavonoids from C. tricuspidata, these metabolites were decreased at the early stage of fermentation, and were increased at end of the fermentation. In terms of the functional food product, various metabolites derived from diverse natural products in CLM had complementary effects and demonstrated higher antioxidant and pancreatic lipase inhibition activities by fermentation; these activities were closely related to flavonoid aglycones including genistein, daidzein, glycitein, luteolin, and quercetin. In vivo experiment, several clinical parameters affected by HFD were remarkably improved by the administration of either CLM or FCLM, but there was a difference in the antiobesity effects. The levels of lysoPCs with C20:4, C16:0, and C22:6 were significantly attenuated by CLM administration, while the attenuated levels of lysoPCs with C20:4 and C18:2 were significantly restored by FCLM administration. These metabolites may explain the above-mentioned differences in antiobesity effects. Although only the changes in plasma lysophospholipids could not fully explain antiobesity effects between non-fermented and fermented plant mixtures from our results, we suggest that metabolomics approach could provide a way to reveal the metabolite alterations in the complex fermentation process and understand the differences or changes in bioactivity according to fermentation.
Institute
Konkuk university
Last NameSuh
First NameDong Ho
AddressNeong-Dong-ro 120, Seoul, Kwang-Gin-gu, 05029, Korea, South
Emailsdh14031988@naver.com
Phone82-02-444-4290
Submit Date2016-01-15
Raw Data AvailableYes
Analysis Type DetailLC-MS
Release Date2016-01-20
Release Version1
Dong Ho Suh Dong Ho Suh
https://dx.doi.org/10.21228/M8TG7T
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000255
Project DOI:doi: 10.21228/M8TG7T
Project Title:Comparison of Metabolites Variation and Antiobesity Effects of a Mixture of Cudrania tricuspidata, Lonicera caerulea, and the Soybean According to Fermentation in vitro and in vivo
Project Summary:We used ultra-performance-liquid-chromatography with quadrupole-time-of-flight mass spectrometry to study the changes in metabolites in the mixture of Cudrania tricuspidata, Lonicera caerulea, and soybean (CLM) during fermentation. Additionally, the antiobesity effects of CLM and fermented-CLM (FCLM) were studied based on the analysis of plasma from high-fat diet (HFD)-fed mice. The levels of cyanidin and the glycosides of luteolin, quercetin, and cyanidin derived from L. caerulea were decreased, whereas the levels of luteolin and quercetin were increased during fermentation. Isoflavone glycosides and soyasaponins originating from the soybean were decreased, whereas their aglycones such as daidzein, glycitein, and genistein were increased. As for prenylated flavonoids from C. tricuspidata, these metabolites were decreased at the early stage of fermentation, and were increased at end of the fermentation. In terms of the functional food product, various metabolites derived from diverse natural products in CLM had complementary effects and demonstrated higher antioxidant and pancreatic lipase inhibition activities by fermentation; these activities were closely related to flavonoid aglycones including genistein, daidzein, glycitein, luteolin, and quercetin. In vivo experiment, several clinical parameters affected by HFD were remarkably improved by the administration of either CLM or FCLM, but there was a difference in the antiobesity effects. The levels of lysoPCs with C20:4, C16:0, and C22:6 were significantly attenuated by CLM administration, while the attenuated levels of lysoPCs with C20:4 and C18:2 were significantly restored by FCLM administration. These metabolites may explain the above-mentioned differences in antiobesity effects. Although only the changes in plasma lysophospholipids could not fully explain antiobesity effects between non-fermented and fermented plant mixtures from our results, we suggest that metabolomics approach could provide a way to reveal the metabolite alterations in the complex fermentation process and understand the differences or changes in bioactivity according to fermentation.
Institute:Konkuk university
Last Name:Suh
First Name:Dong Ho
Address:Neong-Dong-ro 120, Seoul, Kwang-Gin-gu, 05029, Korea, South
Email:sdh14031988@naver.com
Phone:82-02-444-4290
  logo