Summary of Study ST001407

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000963. The data can be accessed directly via it's Project DOI: 10.21228/M86X2T This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001407
Study TitleEnvironmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach
Study TypeSubcutaneous adipose tissue (AT); Visceral AT; Liver Tissue; Plasma
Study SummaryBackground: Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues. Aim: We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome. Methods: We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p’-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways. Results: Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for >80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism. Conclusions: Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations.
Institute
Icahn School of Medicine at Mount Sinai
DepartmentEnvironmental Medicine and Public Health
LaboratoryHigh Resolution Exposomics Research Group
Last NameWalker
First NameDoug
AddressOne Gustave L. Levy Place, Box 1057, New York, NY 10029
Emaildouglas.walker@mssm.edu
Phone212-241-9891
Submit Date2020-06-22
Num Groups1
Total Subjects11
Num Males1
Num Females10
Study CommentsUpload #1: Visceral and subcutaneous abdominal adipose tissue, liver tissue. Plasma metabolomics are in upload #2
PublicationsValvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L. (2020). Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. Environment International. In Press.
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2021-06-19
Release Version1
Doug Walker Doug Walker
https://dx.doi.org/10.21228/M86X2T
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000963
Project DOI:doi: 10.21228/M86X2T
Project Title:Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach
Project Type:Pilot Study
Project Summary:Background: Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues. Aim: We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome. Methods: We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p’-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways. Results: Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for >80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism. Conclusions: Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations. Keywords: persistent organic pollutants, adipose tissue, liver, bariatric surgery, exposome, high-resolution metabolomics
Institute:Icahn School of Medicine at Mount Sinai
Department:Environmental Medicine and Public Health
Laboratory:High Resolution Exposomics Research Group
Last Name:Walker
First Name:Douglas
Address:One Gustave L. Levy Place, Box 1057, New York, NY 10029
Email:douglas.walker@mssm.edu
Phone:212-241-9891
Funding Source:NIEHS: R21ES028903, R21ES029328, R21ES029681, R01ES029944, R01ES030364, U2CES026561, U2CES030163, P30ES023515, P30 ES019776, P30ES007048, P01ES022845, R01ES024946; EPA: RD-83544101
Publications:Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L. (2020). Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. Environment International. In Press.
Contributors:Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L

Subject:

Subject ID:SU001481
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606
Age Or Age Range:11-20 years
Gender:Male and female

Factors:

Subject type: Human; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id Description
SA114184chearplasma_1cCHEAR plasma pool
SA114185chearplasma_1dCHEAR plasma pool
SA114186chearplasma_1bCHEAR plasma pool
SA114187chearplasma_1aCHEAR plasma pool
SA114188NIST_1958_2NIST 1958
SA114189NIST_1958_1NIST 1958
SA114190POTR_02_PlasmaPOTR_02
SA114191POTR_03_PlasmaPOTR_03
SA114192POTR_04_PlasmaPOTR_04
SA114193POTR_05_PlasmaPOTR_05
SA114194POTR_06_PlasmaPOTR_06
SA114195POTR_07_PlasmaPOTR_07
SA114196POTR_08_PlasmaPOTR_08
SA114197POTR_09_PlasmaPOTR_09
SA114198POTR_10_PlasmaPOTR_10
SA114199POTR_11_PlasmaPOTR_11
SA114200POTR_12_PlasmaPOTR_12
SA114201q3June2014_1aQ-Standard plasma pool
SA114202q3June2014_1bQ-Standard plasma pool
SA114203q3June2014_1dQ-Standard plasma pool
SA114204q3June2014_1cQ-Standard plasma pool
Showing results 1 to 21 of 21

Collection:

Collection ID:CO001476
Collection Summary:Eleven adolescents 12–20 years of age undergoing bariatric surgery at Cincinnati Children’s Hospital between 2006 and 2012 were offered enrollment in a prospective biospecimen repository protocol (Pediatric Obesity Tissue Repository [POTR]). Sample recruitment and other POTR features have been reported previously (Davidson et al. 2017). Intraoperatively, visceral adipose tissue (vAT) samples from the omentum, abdominal subcutaneous AT (sAT), and liver samples were obtained by the surgeon and processed immediately in an area adjacent to the operating room. All samples were snap-frozen in liquid nitrogen, then stored at −80°C. Plasma was collected pre-operatively after overnight fasting and stored at -80°C. Written informed consent was obtained from participants equal to or above 18 years old or from the parent or guardian if participants were less than 18 years old. The study was approved by the Institutional Review Board at Cincinnati Children’s Hospital.
Sample Type:Blood (plasma)
Storage Conditions:-80℃

Treatment:

Treatment ID:TR001496
Treatment Summary:The objective of the observational study was to evaluate the relationship between adipose and liver tissue POPs and the plasma metabolome. All participants underwent bariatric surgery at the time of tissue collection. No other treatment or intervention was evaluated.

Sample Preparation:

Sampleprep ID:SP001489
Sampleprep Summary:Samples are prepared for metabolomics analysis using established methods (Johnson et al. (2010). Analyst; Go et al. (2015). Tox Sci). Prior to analysis, plasma aliquots were removed from storage at -80°C and thawed on ice. Each cryotube is then vortexed briefly to ensure homogeneity, and 50 μL transferred to a clean microfuge tube. Immediately after, the plasma is treated with 100 μL of ice-cold LC-MS grade acetonitrile (Sigma Aldrich) containing 2.5 μL of internal standard solution with eight stable isotopic chemicals selected to cover a range of chemical properties. Following addition of acetonitrile, plasma is then equilibrated for 30 min on ice, upon which precipitated proteins are removed by centrifuge (16.1 ×g at 4°C for 10 min). The resulting supernatant (100 μL) is removed, added to a low volume autosampler vial and maintained at 4°C until analysis (<22 h).
Sampleprep Protocol ID:EmoryUniversity_HRM_SP_082016_01.pdf
Sampleprep Protocol Filename:EmoryUniversity_HRM_SP_082016_01.pdf
Processing Storage Conditions:Room temperature

Combined analysis:

Analysis ID AN002350 AN002351
Analysis type MS MS
Chromatography type HILIC Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Waters XBridge BEH Amide XP HILIC (50 x 2.1mm,2.5um) Higgins endcapped C18 stainless steel (50 x 2.1mm,3um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE
Units Peak intensity Peak intensity

Chromatography:

Chromatography ID:CH001722
Chromatography Summary:The HILIC column is operated parallel to reverse phase column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10- port and 6-port switching valves. During operation of HILIC separation method, the MS is operated in positive ion mode and 10 μL of sample is injected onto the HILIC column while the reverse phase column is flushing with wash solution. Flow rate is maintained at 0.35 mL/min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 2% formic acid (v/v) in LC-MS grade water. Initial mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min. During the flushing phase (reverse phase analytical separation), the HILIC column is equilibrated with a wash solution of 77.5% A, 20% B, 2.5% C.
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Waters XBridge BEH Amide XP HILIC (50 x 2.1mm,2.5um)
Column Temperature:60
Flow Gradient:Initial mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min.
Flow Rate:0.35- 0.4 mL/min
Internal Standard:[13C6]-D-glucose, [15N,13C5]- L-methionine, [13C5]-L-glutamic acid, [15N]-L-tyrosine, [3,3-13C2]-cystine, [trimethyl- 13C3]-caffeine, [U-13C5, U-15N2]-L-glutamine
Sample Injection:10 uL
Solvent A:100% water(A), 100% acetonitrile(B), 100% water; 2% formic acid(C)
Solvent B:100% water(A), 100% acetonitrile(B), 100% water; 2% formic acid(C)
Analytical Time:5 min
Chromatography Type:HILIC
  
Chromatography ID:CH001723
Chromatography Summary:The C18 column is operated parallel to the HILIC column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6- port switching valves. During operation of the C18 method, the MS is operated in negative ion mode and 10 μL of sample is injected onto the C18 column while the HILIC column is flushing with wash solution. Flow rate is maintained at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 10mM ammonium acetate in LC-MS grade water. Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min. During the flushing phase (HILIC analytical separation), the C18 column is equilibrated with a wash solution of 0% A, 95% B, 5% C until 2.5 min, followed by an equilibration solution of 60% A, 35% B, 5% C for 2.5 min.
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Higgins endcapped C18 stainless steel (50 x 2.1mm,3um)
Column Temperature:60
Flow Gradient:Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min.
Flow Rate:Flow rate is maintained at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min.
Internal Standard:[13C6]-D-glucose, [15N,13C5]- L-methionine, [13C5]-L-glutamic acid, [15N]-L-tyrosine, [3,3-13C2]-cystine, [trimethyl- 13C3]-caffeine, [U-13C5, U-15N2]-L-glutamine
Sample Injection:10 uL
Solvent A:100% water(A), 100% acetonitrile(B), 100%water; 10mM ammonium acetate(C)
Solvent B:100% water(A), 100% acetonitrile(B), 100%water; 10mM ammonium acetate(C)
Analytical Time:5 min
Chromatography Type:Reversed phase

MS:

MS ID:MS002192
Analysis ID:AN002350
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The high-resolution mass spectrometer was operated at 120,000 resolution and mass-to-charge ratio (m/z) range 85-1275. Probe temperature, capillary temperature, sweep gas and S-Lens RF levels were maintained at 200°C, 300°C, 1 arbitrary units (AU), and 45, respectively. Additional source settings were optimized for sensitivity using a standard mixture, tune settings for sheath gas, auxiliary gas, sweep gas and spray voltage setting were 45 AU, 25 AU and 3.5 kV, respectively. Maximum C-trap injection times were set at 100 milliseconds and automatic gain control target 1 × 106. During untargeted data acquisition, no exclusion or inclusion masses were selected, and data was acquired in MS1 mode only. Raw data files were then extracted using apLCMS (Yu et al. 2009) at five different peak detection settings that have been separately optimized for detection of a wide range of peak intensities and abundances. Peaks detected during each injection were aligned using a mass tolerance of 5 ppm (parts-per-million) and retention grouping was accomplished using non-parametric density estimation grouping, with a maximum retention time deviation of 30 seconds. The resulting feature tables were merged using xMSanalyzer, which identifies overlapping or unique features detected across the different peak detection parameters, and retains the peak with the lowest replicate CV and non-detects for inclusion in the final feature table (Uppal et al. 2013). All R-scripts for data extraction with apLCMS and data merging with xMSanalyzer are provided in the supplementary material. Uniquely detected ions consisted of m/z, retention time and ion abundance, referred to as m/z features. Prior to data analysis, triplicate m/z features averaged and filtered to remove those with triplicate coefficient of variation (CV) ≥ 100% and non-detected values greater than 10%.
Ion Mode:POSITIVE
Capillary Temperature:300C
Ion Source Temperature:200C
Ion Spray Voltage:3.5kV
Ionization:Postive
Mass Accuracy:5ppm
Source Temperature:200C
  
MS ID:MS002193
Analysis ID:AN002351
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:The high-resolution mass spectrometer was operated at 120,000 resolution and mass-to-charge ratio (m/z) range 85-1275. Probe temperature, capillary temperature, sweep gas and S-Lens RF levels were maintained at 200°C, 300°C, 1 arbitrary units (AU), and 45, respectively. Additional source settings were optimized for sensitivity using a standard mixture, tune settings for sheath gas, auxiliary gas, sweep gas and spray voltage setting were 45 AU, 25 AU and 3.5 kV, respectively. Maximum C-trap injection times were set at 100 milliseconds and automatic gain control target 1 × 106. During untargeted data acquisition, no exclusion or inclusion masses were selected, and data was acquired in MS1 mode only. Raw data files were then extracted using apLCMS (Yu et al. 2009) at five different peak detection settings that have been separately optimized for detection of a wide range of peak intensities and abundances. Peaks detected during each injection were aligned using a mass tolerance of 5 ppm (parts-per-million) and retention grouping was accomplished using non-parametric density estimation grouping, with a maximum retention time deviation of 30 seconds. The resulting feature tables were merged using xMSanalyzer, which identifies overlapping or unique features detected across the different peak detection parameters, and retains the peak with the lowest replicate CV and non-detects for inclusion in the final feature table (Uppal et al. 2013). All R-scripts for data extraction with apLCMS and data merging with xMSanalyzer are provided in the supplementary material. Uniquely detected ions consisted of m/z, retention time and ion abundance, referred to as m/z features. Prior to data analysis, triplicate m/z features averaged and filtered to remove those with triplicate coefficient of variation (CV) ≥ 100% and non-detected values greater than 10%.
Ion Mode:NEGATIVE
Capillary Temperature:300C
Ion Source Temperature:200C
Ion Spray Voltage:3.5kV
Ionization:NEgative
Mass Accuracy:5ppm
Source Temperature:200C
  logo