Summary of Study ST001430

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000918. The data can be accessed directly via it's Project DOI: 10.21228/M81H58 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001430
Study TitleMetabolic dynamics and prediction og gestational ange and time to delivery in pregant women
Study SummaryMetabolism during pregnancy is a constantly changing yet precisely programmed process, the failure of which may have devastating consequences for the fetus. To capture in high resolution the sequence of metabolic events underlying the normal human pregnancy, we carried out an untargeted metabolome investigation on 784 weekly blood samples collected from 30 Danish pregnant women. The study revealed extensive metabolome alterations over the course of normal pregnancy: of 9,651 detected metabolic features, 4,995 were significantly changed (FDR < 0.05). Many metabolic changes were timed precisely according to pregnancy progression so that the overall metabolic profile demonstrated a highly choreographed pattern. Using machine-learning methods, we were able to build a linear models with five metabolites (four steroids and one phospholipid) that predicts gestational age with high accuracy (Pearson correlation coefficient, R = 0.95).
Institute
Stanford University
LaboratorySnyder lab
Last NameLiang
First NameLiang
AddressAlway M339, 300 Pasteur Drive, Palo Alto, California, 94305, USA
Emailliangtro@stanford.edu
Phone+1 8167852490
Submit Date2019-08-30
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailLC-MS
Release Date2020-07-24
Release Version1
Liang Liang Liang Liang
https://dx.doi.org/10.21228/M81H58
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR000918
Project DOI:doi: 10.21228/M81H58
Project Title:Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women
Project Summary:Metabolism during pregnancy is a constantly changing yet precisely programmed process, the failure of which may have devastating consequences for the fetus. To capture in high resolution the sequence of metabolic events underlying the normal human pregnancy, we carried out an untargeted metabolome investigation on 784 weekly blood samples (3 outlier samples are removed) collected from 30 Danish pregnant women. The study revealed extensive metabolome alterations over the course of normal pregnancy: of 9,651 detected metabolic features, 4,995 were significantly changed (FDR < 0.05). Many metabolic changes were timed precisely according to pregnancy progression so that the overall metabolic profile demonstrated a highly choreographed pattern. Using machine-learning methods, we were able to build a linear models with five metabolites (four steroids and one phospholipid) that predicts gestational age with high accuracy (Pearson correlation coefficient, R = 0.95).
Institute:Stanford University
Last Name:Liang
First Name:Liang
Address:Alway M339, 300 Pasteur Drive, Palo Alto, California, 94305, USA
Email:liangtro@stanford.edu
Phone:8167852490
Publications:https://doi.org/10.1016/j.cell.2020.05.002

Subject:

Subject ID:SU001504
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606
Gender:Female
Species Group:Mammals

Factors:

Subject type: Human; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id Gestational age Range
SA120934635>20
SA120935235>20
SA120936147>20
SA120937166>20
SA120938551>20
SA120939173>20
SA120940255>20
SA12094116>20
SA120942644>20
SA120943215>20
SA120944313>20
SA120945209>20
SA12094642>20
SA120947460>20
SA1209481>20
SA120949394>20
SA120950699>20
SA120951225>20
SA12095223>20
SA12095389>20
SA120954420>20
SA120955256>20
SA12095695>20
SA120957485>20
SA120958740>20
SA120959662>20
SA120960643>20
SA120961743>20
SA12096238>20
SA120963248>20
SA120964788>20
SA120965590>20
SA120966609>20
SA120967619>20
SA12096878>20
SA120969167>20
SA120970728>20
SA120971597>20
SA120972473>20
SA120973130>20
SA120974732>20
SA120975278>20
SA120976368>20
SA12097788>20
SA120978132>20
SA12097920>20
SA12098019>20
SA120981655>20
SA12098236>20
SA120983238>20
SA120984123>20
SA12098534>20
SA120986247>20
SA120987717>20
SA120988752>20
SA120989742>20
SA120990486>20
SA120991312>20
SA120992385>20
SA120993335>20
SA120994283>20
SA120995631>20
SA120996570>20
SA12099749>20
SA120998588>20
SA120999554>20
SA121000322>20
SA121001310>20
SA121002469>20
SA121003304>20
SA121004766>20
SA121005663>20
SA121006555>20
SA121007471>20
SA121008457>20
SA121009287>20
SA121010746>20
SA121011521>20
SA121012776>20
SA121013390>20
SA121014279>20
SA121015793>20
SA121016496>20
SA121017458>20
SA121018376>20
SA121019715>20
SA121020432>20
SA121021526>20
SA121022673>20
SA121023375>20
SA121024580>20
SA121025523>20
SA121026726>20
SA121027545>20
SA121028488>20
SA121029510>24
SA121030628>24
SA121031585>24
SA121032149>24
SA121033155>24
Showing page 1 of 8     Results:    1  2  3  4  5  Next  Last     Showing results 1 to 100 of 781

Collection:

Collection ID:CO001499
Collection Summary:To capture the highly dynamic pregnancy process, we established a multi-year single-center Danish normal pregnancy cohort with a unique design of high-density blood sampling. Consented female participants submitted weekly blood draws beginning in week 5 of pregnancy until the postpartum period. A total of 30 women with weekly blood samples were assigned to a discovery (N=21) and a validation (Validation-1, N=9) cohort , whose samples were analyzed in two separated years.
Sample Type:Blood (plasma)
Storage Conditions:-80℃

Treatment:

Treatment ID:TR001519
Treatment Summary:No treatment.

Sample Preparation:

Sampleprep ID:SP001512
Sampleprep Summary:784 normal pregnancy samples (3 outlier samples were removed) were completely randomized within each cohort (Discovery and Validation - 1) and analyzed in 12 batches across two years. 200 μL plasma was extracted by mixing 800 μL 1:1:1 acetone: acetonitrile: methanol with the internal standard mixture. The extraction mixture was vortexed and mixed for 15 min at 4 C and incubated at -20 C for 2 hours to allow protein precipitation. The supernatant was collected after centrifugation and evaporated to dryness under nitrogen (Biotage Turbovap). The dry extracts were reconstituted with 200 μL 1:1 methanol: water before analysis.

Combined analysis:

Analysis ID AN002391 AN002392
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Agilent Zorbax Eclipse Plus C18 (100 x 2.1mm, 1.8 um) Agilent Zorbax Eclipse Plus C18 (100 x 2.1mm, 1.8 um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Plus Orbitrap Thermo Q Exactive Plus Orbitrap
Ion Mode POSITIVE NEGATIVE
Units peak area peak area

Chromatography:

Chromatography ID:CH001758
Chromatography Summary:Chromatographic conditions RPLC separation was performed using Zorbax SB columns (2.1 X 50mm, 1.8 Micron, 600 Bar; 827700-914) purchased from Agilent Technologies (Santa Clara, CA, USA). Mobile phases for RPLC consisted of 0.06% acetic acid in water (phase A) and 0.06% acetic acid in MeOH (phase B). Metabolites were eluted from the column at a flow rate of 0.6 mL/min, leading to a backpressure of 220– 280 bar at 99% phase A. A linear 1%–80% phase B gradient was applied over 9–10 min. The oven temperature was set to 60C, and the sample injection volume was 5 mL.
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Agilent Zorbax Eclipse Plus C18 (100 x 2.1mm, 1.8 um)
Chromatography Type:Reversed phase

MS:

MS ID:MS002233
Analysis ID:AN002391
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS acquisition Metabolic extracts were analyzed by reversed-phase liquid chromatographic (RPLC)-mass spectrometry (MS) in both positive and negative ionization modes. Thermo Q Exactive Hybrid Quadrupole-Orbitrap plus and Q Exactive mass spectrometers (Xcalibur, Thermo Scientific, San Jose, CA, USA) were operated in full MS-scan mode for data acquisition (acquisition from m/z 500 to 2,000) with a scan rate of approximately 4 Hz and a resolution set at 30,000 (at m/z 400). The MS/MS spectra of the QC sample were acquired under different fragmentation energy (25 NCE and 50 NCE) of the top 10 parent ions. The resulting mass spectra were exported into Progenesis QI Software (Nonlinear Dynamics, Durham, NC, USA) for further processing. Section 1: Metabolomics Data Processing Metabolomic features were extracted with a unique mass/charge ratio and retention time, then aligned and quantified with the Progenesis QI software (Nonlinear Dynamics, Durham, NC, USA, http://www.nonlinear.com/progenesis/qi/). Peak deconvolution ll e2 Cell 181, 1680–1692.e1–e5, June 25, 2020 Resource was performed under default settings in Progenesis QI. Acquired data were processed using an analysis pipeline written in R (https:// www.R-project.org). Progenesis QI output was then processed by removing all metabolites that were quantified in less than 30% of the samples or had a median intensity of less than twofold signal over the noise threshold (S/N < 2). The noise threshold was estimated by using the median signal across all the blank runs (if no quantitation was reported in any of the blank runs, the feature was also included in the analysis, as it likely had good S/N characteristics). Then the data were log-transformed and normalized. For each run, the median of all features was centered to correct for variation in the sample amount. Then for each analyte, a linear correction was applied per batch to correct for any linear decrease or increase in abundance during the acquisition of a batch. In short, for each analyte and each batch, a linear model was fitted with the log-abundance of the analyte as the dependent variable and the acquisition number [run order (randomized)] as the independent variable. The model prediction was interpreted as an underlying drift in mass spectrometric sensitivity and subtracted from the analyte level to yield within-batch normalized abundances. Finally, for each analyte, the abundances were median centered by batch to correct for sensitivity differences between batches. The positive- and negative-mode features were then concatenated for downstream analysis. In total, 9,651 features were included in the final analysis. In addition, for samples with more than 50% of the values missing, the sample was removed (one sample in total). The remaining missing values were imputed by the nearest 10 neighbors using the k-Nearest Neighbor algorithm (Altman, 1992). Note that Discovery and Test Set 1 were normalized together, while samples of Test Set 2 were normalized independently. We applied principal component analysis (PCA) to examine the overall distribution of the sample data (with all 9,651 features) and check the run quality. The gestational ages (based on first-trimester ultrasound measurements) were superimposed to facilitate the analysis. During the analysis, the vast majority of the samples were separated by pre- and postpartum in PCA space defined by two components, which explained the largest variations (PC1 and 2, Figure 1B), while two samples of a same subject (last two in her collection, before and after childbirth) displayed irregular behavior in PCA and unsupervised clustering analysis. The two samples were treated as outliers and excluded from further analysis. We also performed partial least-squares discriminant analysis (PLSDA) according to the categories of gestational age (by the mixOmics package).
Ion Mode:POSITIVE
  
MS ID:MS002234
Analysis ID:AN002392
Instrument Name:Thermo Q Exactive Plus Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS acquisition Metabolic extracts were analyzed by reversed-phase liquid chromatographic (RPLC)-mass spectrometry (MS) in both positive and negative ionization modes. Thermo Q Exactive Hybrid Quadrupole-Orbitrap plus and Q Exactive mass spectrometers (Xcalibur, Thermo Scientific, San Jose, CA, USA) were operated in full MS-scan mode for data acquisition (acquisition from m/z 500 to 2,000) with a scan rate of approximately 4 Hz and a resolution set at 30,000 (at m/z 400). The MS/MS spectra of the QC sample were acquired under different fragmentation energy (25 NCE and 50 NCE) of the top 10 parent ions. The resulting mass spectra were exported into Progenesis QI Software (Nonlinear Dynamics, Durham, NC, USA) for further processing. Section 1: Metabolomics Data Processing Metabolomic features were extracted with a unique mass/charge ratio and retention time, then aligned and quantified with the Progenesis QI software (Nonlinear Dynamics, Durham, NC, USA, http://www.nonlinear.com/progenesis/qi/). Peak deconvolution ll e2 Cell 181, 1680–1692.e1–e5, June 25, 2020 Resource was performed under default settings in Progenesis QI. Acquired data were processed using an analysis pipeline written in R (https:// www.R-project.org). Progenesis QI output was then processed by removing all metabolites that were quantified in less than 30% of the samples or had a median intensity of less than twofold signal over the noise threshold (S/N < 2). The noise threshold was estimated by using the median signal across all the blank runs (if no quantitation was reported in any of the blank runs, the feature was also included in the analysis, as it likely had good S/N characteristics). Then the data were log-transformed and normalized. For each run, the median of all features was centered to correct for variation in the sample amount. Then for each analyte, a linear correction was applied per batch to correct for any linear decrease or increase in abundance during the acquisition of a batch. In short, for each analyte and each batch, a linear model was fitted with the log-abundance of the analyte as the dependent variable and the acquisition number [run order (randomized)] as the independent variable. The model prediction was interpreted as an underlying drift in mass spectrometric sensitivity and subtracted from the analyte level to yield within-batch normalized abundances. Finally, for each analyte, the abundances were median centered by batch to correct for sensitivity differences between batches. The positive- and negative-mode features were then concatenated for downstream analysis. In total, 9,651 features were included in the final analysis. In addition, for samples with more than 50% of the values missing, the sample was removed (one sample in total). The remaining missing values were imputed by the nearest 10 neighbors using the k-Nearest Neighbor algorithm (Altman, 1992). Note that Discovery and Test Set 1 were normalized together, while samples of Test Set 2 were normalized independently. We applied principal component analysis (PCA) to examine the overall distribution of the sample data (with all 9,651 features) and check the run quality. The gestational ages (based on first-trimester ultrasound measurements) were superimposed to facilitate the analysis. During the analysis, the vast majority of the samples were separated by pre- and postpartum in PCA space defined by two components, which explained the largest variations (PC1 and 2, Figure 1B), while two samples of a same subject (last two in her collection, before and after childbirth) displayed irregular behavior in PCA and unsupervised clustering analysis. The two samples were treated as outliers and excluded from further analysis. We also performed partial least-squares discriminant analysis (PLSDA) according to the categories of gestational age (by the mixOmics package).
Ion Mode:NEGATIVE
  logo