Summary of Study ST002036

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001288. The data can be accessed directly via it's Project DOI: 10.21228/M8771V This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002036
Study TitleIrradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Kidney)
Study SummaryInvestigating the metabolic effects of radiation is critical to understand the impact of radiotherapy (e.g., for bone marrow irradiation prior to hematopoietic stem cell transplantation in the clinic or in laboratory studies), space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. Previous studies assert that both irradiation and iron independently modulate tryptophan and indole metabolism of the microbiome, which may in turn impact host immune response. However, no studies have interrogated the multi-organ effects of these treatments concurrently. Herein, we use a model that recapitulate transfusional iron overload, a condition often observed in chronically transfused patients with thalassemia, sickle cell disease, or myelodysplastic syndrome. We applied an omics approach to investigate the impact of both iron load and irradiation on the host metabolome. Our results revealed dose-dependent effects of irradiation in red blood cells (RBC), plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidney, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the respose to radiation in the organs and blood, especially in RBC polyamine metabolism and spleen antioxidant metabolism, and affected glucose, sulfur (especially methionine and glutathione systems) and tryptophan metabolism in the liver, stool, and brain. Together, the results suggest that radiation impacts metabolism on a multi-organ level with a significant interaction of host iron status.
Institute
University of Colorado Anschutz Medical Campus
Last NameRoy
First NameMicaela
Address13001 E 17th Pl, Aurora, CO 80045
Emailmicaela.roy@cuanschutz.edu
Phone303-724-3339
Submit Date2021-12-28
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2022-01-21
Release Version1
Micaela Roy Micaela Roy
https://dx.doi.org/10.21228/M8771V
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001288
Project DOI:doi: 10.21228/M8771V
Project Title:Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs
Project Summary:Investigating the metabolic effects of radiation is critical to understand the impact of radiotherapy (e.g., for bone marrow irradiation prior to hematopoietic stem cell transplantation in the clinic or in laboratory studies), space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. Previous studies assert that both irradiation and iron independently modulate tryptophan and indole metabolism of the microbiome, which may in turn impact host immune response. However, no studies have interrogated the multi-organ effects of these treatments concurrently. Herein, we use a model that recapitulate transfusional iron overload, a condition often observed in chronically transfused patients with thalassemia, sickle cell disease, or myelodysplastic syndrome. We applied an omics approach to investigate the impact of both iron load and irradiation on the host metabolome. Our results revealed dose-dependent effects of irradiation in red blood cells (RBC), plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidney, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the respose to radiation in the organs and blood, especially in RBC polyamine metabolism and spleen antioxidant metabolism, and affected glucose, sulfur (especially methionine and glutathione systems) and tryptophan metabolism in the liver, stool, and brain. Together, the results suggest that radiation impacts metabolism on a multi-organ level with a significant interaction of host iron status.
Institute:University of Colorado Anschutz Medical Campus
Last Name:Roy
First Name:Micaela
Address:13001 E 17th Pl, Aurora
Email:micaela.roy@cuanschutz.edu
Phone:9259977554

Subject:

Subject ID:SU002118
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090

Factors:

Subject type: Mammal; Subject species: Mus musculus (Factor headings shown in green)

mb_sample_id local_sample_id Treatment Radiation Dose
SA19154549IV iron Gy10
SA19154650IV iron Gy10
SA19154747IV iron Gy10
SA19154848IV iron Gy10
SA19154946IV iron Gy10
SA19155057IV iron Gy11
SA19155158IV iron Gy11
SA19155256IV iron Gy11
SA19155359IV iron Gy11
SA19155460IV iron Gy11
SA19155519IV iron Gy7
SA19155620IV iron Gy7
SA19155718IV iron Gy7
SA19155817IV iron Gy7
SA19155916IV iron Gy7
SA19156028IV iron Gy8
SA19156129IV iron Gy8
SA19156230IV iron Gy8
SA19156326IV iron Gy8
SA19156427IV iron Gy8
SA19156537IV iron Gy9
SA19156639IV iron Gy9
SA19156740IV iron Gy9
SA19156836IV iron Gy9
SA19156938IV iron Gy9
SA1915706IV iron no irradiated
SA1915717IV iron no irradiated
SA1915728IV iron no irradiated
SA19157310IV iron no irradiated
SA1915749IV iron no irradiated
SA19157541Saline Gy10
SA19157644Saline Gy10
SA19157745Saline Gy10
SA19157843Saline Gy10
SA19157942Saline Gy10
SA19158051Saline Gy11
SA19158153Saline Gy11
SA19158254Saline Gy11
SA19158355Saline Gy11
SA19158452Saline Gy11
SA19158515Saline Gy7
SA19158614Saline Gy7
SA19158713Saline Gy7
SA19158811Saline Gy7
SA19158925Saline Gy8
SA19159022Saline Gy8
SA19159124Saline Gy8
SA19159223Saline Gy8
SA19159321Saline Gy8
SA19159432Saline Gy9
SA19159531Saline Gy9
SA19159635Saline Gy9
SA19159733Saline Gy9
SA19159834Saline Gy9
SA1915992Saline no irradiated
SA1916003Saline no irradiated
SA1916011Saline no irradiated
SA1916024Saline no irradiated
Showing results 1 to 58 of 58

Collection:

Collection ID:CO002111
Collection Summary:At day +4 post irradiation, mice were euthanized and tissue was collected, weighted, and stored at -80C until further processing.
Sample Type:Kidney

Treatment:

Treatment ID:TR002130
Treatment Summary:After one week of acclimatization in a pathogen-free facility, cohorts of mice were retro-orbitally infused with phosphate buffer saline (PBS) or 12.5 mg of iron dextran (Henry Shein Animal Health, Dublin, OH), twice a week for 2 weeks for a total of 50 mg of iron. After 2 days of rest, mice were then divided in groups and irradiated with 7, 8, 9, 10, 11 Gy of C-137 (n=5 per group). Total dose was split in 2 doses 3 hours apart.

Sample Preparation:

Sampleprep ID:SP002124
Sampleprep Summary:Tissue was extracted in 1mL of methanol:acetonitrile:water (5:3:2, v/v/v).29 After vortexing at 4°C for 30 min, extracts were separated from the protein pellet by centrifugation for 10 min at 10,000g at 4°C and stored at −80°C until analysis.

Combined analysis:

Analysis ID AN003311 AN003312
Analysis type MS MS
Chromatography type Reversed phase Reversed phase
Chromatography system Thermo Vanquish Thermo Vanquish
Column Phenomenex Kinetex C18 (150 x 2.1mm,2.6um) Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive Orbitrap Thermo Q Exactive Orbitrap
Ion Mode POSITIVE NEGATIVE
Units peak area top peak area top

Chromatography:

Chromatography ID:CH002450
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase
  
Chromatography ID:CH002451
Instrument Name:Thermo Vanquish
Column Name:Phenomenex Kinetex C18 (150 x 2.1mm,2.6um)
Chromatography Type:Reversed phase

MS:

MS ID:MS003081
Analysis ID:AN003311
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Samples (10uL injection for cells, 20uL injection for SUPs) were introduced to the MS via electrospray ionization with the MS scanning in full MS mode (2 µscans) and ddMS2 (top15) over the range of 65-950 m/z. Technical replicates were injected every six to twelve samples to ensure instrument stability (Nemkov et al., 2019). Metabolites were manually selected integrated with Maven (Princeton University) in conjunction with the KEGG database. Peak quality was determined using blanks, technical mixes, and 13C abundance.
Ion Mode:POSITIVE
  
MS ID:MS003082
Analysis ID:AN003312
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:Samples (10uL injection for cells, 20uL injection for SUPs) were introduced to the MS via electrospray ionization with the MS scanning in full MS mode (2 µscans) and ddMS2 (top15) over the range of 65-950 m/z. Technical replicates were injected every six to twelve samples to ensure instrument stability (Nemkov et al., 2019). Metabolites were manually selected integrated with Maven (Princeton University) in conjunction with the KEGG database. Peak quality was determined using blanks, technical mixes, and 13C abundance.
Ion Mode:NEGATIVE
  logo