Summary of Study ST003006

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001873. The data can be accessed directly via it's Project DOI: 10.21228/M8MF0Z This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003006
Study TitleBAT metabolomics from cold and TN mouse models
Study SummaryBrown adipose tissue (BAT) metabolites in mice acclimated to cold (6˚C) or thermoneutrality (30˚C) for two weeks. N = 10 for mice housed at 6 ˚C and 9 for mice housed at 30 ˚C.
Institute
Harvard Medical School
Last NameWang
First NameDandan
Address3 Blackfan Circle
Emaildandanwang2022@gmail.com
Phone5083733714
Submit Date2023-12-13
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-02-19
Release Version1
Dandan Wang Dandan Wang
https://dx.doi.org/10.21228/M8MF0Z
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001873
Project DOI:doi: 10.21228/M8MF0Z
Project Title:Uncoupling Metabolic Health from Thermogenesis via BCAA Flux in Brown Fat
Project Type:MS quantitative analysis
Project Summary:Brown adipose tissue (BAT) is best known for thermogenesis. Whereas numerous studies in rodents found tight associations between the metabolic benefits of BAT and enhanced whole-body energy expenditure, emerging evidence in humans suggests that BAT is protective against Type 2 diabetes independent of body-weight. The underlying mechanism for this dissociation remained unclear. Here, we report that impaired mitochondrial flux of branched-chain amino acids (BCAA) in BAT, by deleting mitochondrial BCAA carrier (MBC, encoded by Slc25a44), was sufficient to cause systemic insulin resistance without affecting whole-body energy expenditure or body-weight. We found that brown adipocytes catabolized BCAAs in the mitochondria as essential nitrogen donors for the biosynthesis of glutamate, N-acetylated amino acids, and one of the products, glutathione. BAT-selective impairment in mitochondrial BCAA flux led to elevated oxidative stress and insulin resistance in the liver, accompanied by reduced levels of BCAA-derived metabolites in the circulation. In turn, supplementation of glutathione restored insulin sensitivity of BAT-specific MBC knockout mice. Notably, a high-fat diet rapidly impaired BCAA catabolism and the synthesis of BCAA-nitrogen derived metabolites in the BAT, while cold-induced BAT activity is coupled with an active synthesis of these metabolites. Together, the present work uncovers a mechanism through which brown fat controls metabolic health independent of thermogenesis via BCAA-derived nitrogen carriers acting on the liver.
Institute:Harvard Medical School
Last Name:Wang
First Name:Dandan
Address:3 Blackfan Circle, Boston, MA, 02115, USA
Email:dandanwang2022@gmail.com
Phone:5083733714

Subject:

Subject ID:SU003120
Subject Type:Mammal
Subject Species:Mus musculus
Taxonomy ID:10090

Factors:

Subject type: Mammal; Subject species: Mus musculus (Factor headings shown in green)

mb_sample_id local_sample_id Temperature
SA326863BAT_6C_chow_neg_86C
SA326864BAT_6C_chow_neg_96C
SA326865BAT_6C_chow_neg_16C
SA326866BAT_6C_chow_neg_76C
SA326867BAT_6C_chow_neg_106C
SA326868BAT_6C_chow_neg_66C
SA326869BAT_6C_chow_neg_36C
SA326870BAT_6C_chow_neg_26C
SA326871BAT_6C_chow_neg_56C
SA326872BAT_6C_chow_neg_46C
SA326873BAT_TN_chow_neg_7TN
SA326874BAT_TN_chow_neg_8TN
SA326875BAT_TN_chow_neg_9TN
SA326876BAT_TN_chow_neg_6TN
SA326877BAT_TN_chow_neg_3TN
SA326878BAT_TN_chow_neg_1TN
SA326879BAT_TN_chow_neg_2TN
SA326880BAT_TN_chow_neg_4TN
SA326881BAT_TN_chow_neg_5TN
Showing results 1 to 19 of 19

Collection:

Collection ID:CO003113
Collection Summary:Animals were sacrificed immediately by cervical dislocation and tissues were rapidly extracted and immediately snap frozen in liquid nitrogen for metabolite profiling.
Sample Type:Adipose tissue

Treatment:

Treatment ID:TR003129
Treatment Summary:All mice were housed under a 12 h – 12 h light/dark cycle. Room-temperature mice were housed at 23˚C in ventilated cages with an ACH of 25. Mice housed at thermal neutral conditions were housed in an incubator at 30˚C. Mice exposed to cold were individually housed in an incubator set to 6˚C. Mice were fed a standard diet (Lab Diet 5008) and had free access to food and water.

Sample Preparation:

Sampleprep ID:SP003126
Sampleprep Summary:For metabolite extraction, tissues were weighed and then homogenized with extraction buffer which consisted of 80% methanol containing Phenylalanine-D₈ internal standard at a 40:1 volume to wet weight ratio. Samples were then centrifuged at 16,000 x g at 4 °C for 15 min. Finally, 50 μL supernatant was transferred to the glass insert for LC-MS detection.

Combined analysis:

Analysis ID AN004937
Analysis type MS
Chromatography type HILIC
Chromatography system Vanquish Horizon
Column Waters ACQUITY UPLC BEH Amide (100 x 2.1mm,1.7um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo orbitrap exploris 240
Ion Mode NEGATIVE
Units Peak area

Chromatography:

Chromatography ID:CH003726
Instrument Name:Vanquish Horizon
Column Name:Waters ACQUITY UPLC BEH Amide (100 x 2.1mm,1.7um)
Column Temperature:25 °C
Flow Gradient:The linear gradient eluted from 95% B (0.0–1 min), 95% B to 65% B (1–7.0 min), 65% B to 40% B (7.0–8.0 min), 40% B (8.0–9.0 min), 40% B to 95% B (9.0–9.1 min), then stayed at 95% B for 5.9 min.
Flow Rate:0.4 mL/min
Solvent A:100% water; 25mM ammonium acetate; 25mM ammonium hydroxide
Solvent B:100% acetonitrile
Chromatography Type:HILIC

MS:

MS ID:MS004680
Analysis ID:AN004937
Instrument Name:Thermo orbitrap exploris 240
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:ESI source parameters were set as follows: spray voltage, 3500 V or −2800 V, in positive or negative modes, respectively; vaporizer temperature, 350 °C; sheath gas, 50 arb; aux gas, 10 arb; ion transfer tube temperature, 325 °C. The full scan was set as: orbitrap resolution, 60,000; maximum injection time, 100 ms; scan range, 70–1050 Da. The ddMS2 scan was set as: orbitrap resolution, 30,000; maximum injection time, 60 ms; top N setting, 6; isolation width, 1.0 m/z; HCD collision energy (%), 30; Dynamic exclusion mode was set as auto. The metabolites was quantified by Compound Discoverer 3.3.
Ion Mode:NEGATIVE
  logo