Summary of Study ST003562
This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR002196. The data can be accessed directly via it's Project DOI: 10.21228/M8RV6M This work is supported by NIH grant, U2C- DK119886.
See: https://www.metabolomicsworkbench.org/about/howtocite.php
This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.
Study ID | ST003562 |
Study Title | Multiple, redundant carboxylic acid transporters support mitochondrial metabolism in Plasmodium falciparum |
Study Summary | The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Indeed, blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for novel antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins (MPC1 and MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both proteins with only minor asexual blood-stage growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters – DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) – only mildly affected asexual blood-stage replication, even in the context of MPC-deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the mitochondria of blood-stage malaria parasites with imported carbon from two major carbon sources – glucose and glutamine. |
Institute | Pennsylvania State University |
Department | Biochemistry and Molecular Biology |
Laboratory | Manuel Llinás |
Last Name | Manuel |
First Name | Llinàs |
Address | 491 Pollock Road |
manuel@psu.edu | |
Phone | 8148673444 |
Submit Date | 2024-09-30 |
Raw Data Available | Yes |
Raw Data File Type(s) | mzML |
Analysis Type Detail | LC-MS |
Release Date | 2024-11-20 |
Release Version | 1 |
Select appropriate tab below to view additional metadata details:
Project:
Project ID: | PR002196 |
Project DOI: | doi: 10.21228/M8RV6M |
Project Title: | Multiple, redundant carboxylic acid transporters support mitochondrial metabolism in Plasmodium falciparum |
Project Summary: | The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Indeed, blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for novel antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins (MPC1 and MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both proteins with only minor asexual blood-stage growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters – DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) – only mildly affected asexual blood-stage replication, even in the context of MPC-deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the mitochondria of blood-stage malaria parasites with imported carbon from two major carbon sources – glucose and glutamine. |
Institute: | Pennsylvania State University |
Department: | Biochemistry and Molecular Biology |
Laboratory: | Manuel Llinás |
Last Name: | Manuel |
First Name: | Llinás |
Address: | 491 Pollock Road, Millennium Science Complex, W126 |
Email: | manuel@psu.edu |
Phone: | 814-867-3444 |
Subject:
Subject ID: | SU003691 |
Subject Type: | Cultured cells |
Subject Species: | Plasmodium falciparum |
Taxonomy ID: | 5833 |
Genotype Strain: | NF54 attB |
Cell Biosource Or Supplier: | Prigge Lab, Johns Hopkins University |
Factors:
Subject type: Cultured cells; Subject species: Plasmodium falciparum (Factor headings shown in green)
mb_sample_id | local_sample_id | Sample source | Sample type | Treatment |
---|---|---|---|---|
SA389218 | 20240315_0227-2KO-glucose-3 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389219 | 20240206_2KO-glucose-1 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389220 | 20240206_2KO-glucose-2 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389221 | 20240206_2KO-glucose-3 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389222 | 20240315_0227-2KO-glucose-2 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389223 | 20240315_0227-2KO-glucose-1 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389224 | 20240315_0304-2KO-glucose-1 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389225 | 20240315_0304-2KO-glucose-2 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389226 | 20240315_0304-2KO-glucose-3 | Cultured Plasmodium falciparum | 2KO | glucose |
SA389227 | 20240315_0227-2KO-glutamine-3 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389228 | 20240315_0304-2KO-glutamine-3 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389229 | 20240315_0304-2KO-glutamine-2 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389230 | 20240315_0304-2KO-glutamine-1 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389231 | 20240206_2KO-glutamine-1 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389232 | 20240206_2KO-glutamine-2 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389233 | 20240206_2KO-glutamine-3 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389234 | 20240315_0227-2KO-glutamine-1 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389235 | 20240315_0227-2KO-glutamine-2 | Cultured Plasmodium falciparum | 2KO | glutamine |
SA389236 | 20211215_3KO-glucose-1 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389237 | 20220330_3KO-glucose-2 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389238 | 20230804_3KO-glucose-3 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389239 | 20230804_3KO-glucose-2 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389240 | 20230804_3KO-glucose-1 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389241 | 20211215_3KO-glucose-3 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389242 | 20211215_3KO-glucose-2 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389243 | 20220330_3KO-glucose-1 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389244 | 20220429_3KO-glucose-2 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389245 | 20220429_3KO-glucose-3 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389246 | 20220429_3KO-glucose-1 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389247 | 20220330_3KO-glucose-3 | Cultured Plasmodium falciparum | 3KO | glucose |
SA389248 | 20220429_3KO-glutamine-2 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389249 | 20220429_3KO-glutamine-1 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389250 | 20220330_3KO-glutamine-2 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389251 | 20220330_3KO-glutamine-1 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389252 | 20230804_3KO-glutamine-2 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389253 | 20220330_3KO-glutamine-3 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389254 | 20230804_3KO-glutamine-3 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389255 | 20230804_3KO-glutamine-1 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389256 | 20211215_3KO-glutamine-2 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389257 | 20211215_3KO-glutamine-1 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389258 | 20211215_3KO-glutamine-3 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389259 | 20220429_3KO-glutamine-3 | Cultured Plasmodium falciparum | 3KO | glutamine |
SA389260 | 20230804_4KO-glucose-2 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389261 | 20230830_4KO-glucose-1 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389262 | 20230830_4KO-glucose-2 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389263 | 20240206_4KO-glucose-2 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389264 | 20230804_4KO-glucose-1 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389265 | 20240206_4KO-glucose-3 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389266 | 20240206_4KO-glucose-1 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389267 | 20230804_4KO-glucose-3 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389268 | 20230830_4KO-glucose-3 | Cultured Plasmodium falciparum | 4KO | glucose |
SA389269 | 20230804_4KO-glutamine-1 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389270 | 20230804_4KO-glutamine-2 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389271 | 20230804_4KO-glutamine-3 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389272 | 20240206_4KO-glutamine-1 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389273 | 20230830_4KO-glutamine-3 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389274 | 20230830_4KO-glutamine-2 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389275 | 20230830_4KO-glutamine-1 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389276 | 20240206_4KO-glutamine-2 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389277 | 20240206_4KO-glutamine-3 | Cultured Plasmodium falciparum | 4KO | glutamine |
SA389278 | 20220330_Blank2 | Cultured Plasmodium falciparum | Blank | NA |
SA389279 | 20220429_Blank2 | Cultured Plasmodium falciparum | Blank | NA |
SA389280 | 20230830_Blank-2 | Cultured Plasmodium falciparum | Blank | NA |
SA389281 | 20230830_Blank-1 | Cultured Plasmodium falciparum | Blank | NA |
SA389282 | 20230830_Blank-3 | Cultured Plasmodium falciparum | Blank | NA |
SA389283 | 20220429_Blank3 | Cultured Plasmodium falciparum | Blank | NA |
SA389284 | 20240315_0227-Blank-3 | Cultured Plasmodium falciparum | Blank | NA |
SA389285 | 20240315_0227-Blank-2 | Cultured Plasmodium falciparum | Blank | NA |
SA389286 | 20240315_0227-Blank-1 | Cultured Plasmodium falciparum | Blank | NA |
SA389287 | 20220330_Blank3 | Cultured Plasmodium falciparum | Blank | NA |
SA389288 | 20220330_Blank4 | Cultured Plasmodium falciparum | Blank | NA |
SA389289 | 20220330_Blank5 | Cultured Plasmodium falciparum | Blank | NA |
SA389290 | 20240206_Blank-1 | Cultured Plasmodium falciparum | Blank | NA |
SA389291 | 20240206_Blank-2 | Cultured Plasmodium falciparum | Blank | NA |
SA389292 | 20240206_Blank-3 | Cultured Plasmodium falciparum | Blank | NA |
SA389293 | 20240206_Blank-4 | Cultured Plasmodium falciparum | Blank | NA |
SA389294 | 20220330_Blank1 | Cultured Plasmodium falciparum | Blank | NA |
SA389295 | 20230804_Blank-3 | Cultured Plasmodium falciparum | Blank | NA |
SA389296 | 20211215_Blank3 | Cultured Plasmodium falciparum | Blank | NA |
SA389297 | 20211215_Blank5 | Cultured Plasmodium falciparum | Blank | NA |
SA389298 | 20211215_Blank4 | Cultured Plasmodium falciparum | Blank | NA |
SA389299 | 20211215_Blank1 | Cultured Plasmodium falciparum | Blank | NA |
SA389300 | 20220429_Blank1 | Cultured Plasmodium falciparum | Blank | NA |
SA389301 | 20220429_Blank4 | Cultured Plasmodium falciparum | Blank | NA |
SA389302 | 20230804_Blank-2 | Cultured Plasmodium falciparum | Blank | NA |
SA389303 | 20230804_Blank-1 | Cultured Plasmodium falciparum | Blank | NA |
SA389304 | 20240315_0304-Blank-1 | Cultured Plasmodium falciparum | Blank | NA |
SA389305 | 20240315_0304-Blank-2 | Cultured Plasmodium falciparum | Blank | NA |
SA389306 | 20240315_0304-Blank-3 | Cultured Plasmodium falciparum | Blank | NA |
SA389307 | 20220429_Blank5 | Cultured Plasmodium falciparum | Blank | NA |
SA389308 | 20211215_Blank2 | Cultured Plasmodium falciparum | Blank | NA |
SA389309 | 20240315_0304-Parental-glucose-1 | Cultured Plasmodium falciparum | Parental | glucose |
SA389310 | 20220330_Parental-glucose-1 | Cultured Plasmodium falciparum | Parental | glucose |
SA389311 | 20230804_Parental-glucose-3 | Cultured Plasmodium falciparum | Parental | glucose |
SA389312 | 20240315_0304-Parental-glucose-2 | Cultured Plasmodium falciparum | Parental | glucose |
SA389313 | 20240315_0304-Parental-glucose-3 | Cultured Plasmodium falciparum | Parental | glucose |
SA389314 | 20220429_Parental-glucose-3 | Cultured Plasmodium falciparum | Parental | glucose |
SA389315 | 20220429_Parental-glucose-2 | Cultured Plasmodium falciparum | Parental | glucose |
SA389316 | 20240206_Parental-glucose-1 | Cultured Plasmodium falciparum | Parental | glucose |
SA389317 | 20240206_Parental-glucose-2 | Cultured Plasmodium falciparum | Parental | glucose |
Collection:
Collection ID: | CO003684 |
Collection Summary: | Each sample represents metabolites extracted from 1E8 Plasmodium falciparum infected human red blood cells (iRBCs). After treatment, the iRBCs were washed with cold PBS and metabolites were extracted using a 90% methanol solution. This solution was evaporated under nitrogen gas flow, resuspended in water plus chlorpropamide as an internal control, and run on the ThermoFisher Exactive Plus. |
Sample Type: | Cultured cells |
Treatment:
Treatment ID: | TR003700 |
Treatment Summary: | Magnetically purified Plasmodium falciparum infected human red blood cells (iRBCs) were cultured for 2.5 hours in standard RPMI media lacking normal glucose or glutamine but containing radiolabeled glucose or glutamine respectively. |
Sample Preparation:
Sampleprep ID: | SP003698 |
Sampleprep Summary: | Dried metabolite residue was resuspended to 1E6 former parasites per microliter of water (usually 100 microliters) containing 1 micromolar chlorpropamide as an internal control. These samples were then run on HPLC-MS |
Combined analysis:
Analysis ID | AN005853 |
---|---|
Analysis type | MS |
Chromatography type | Reversed phase |
Chromatography system | Thermo Dionex Ultimate 3000 |
Column | Waters XSelect HSS T3 Column XP (100 x 2.1 mm, 2.5 um) |
MS Type | ESI |
MS instrument type | Orbitrap |
MS instrument name | Thermo Q Exactive Plus Orbitrap |
Ion Mode | NEGATIVE |
Units | blank-subtracted peak area |
Chromatography:
Chromatography ID: | CH004445 |
Instrument Name: | Thermo Dionex Ultimate 3000 |
Column Name: | Waters XSelect HSS T3 Column XP (100 x 2.1 mm, 2.5 um) |
Column Temperature: | 30°C |
Flow Gradient: | 0-5.0 min: 100% A, 0% B; 5.0-13.0 min: 80% A, 20% B; 13.0-15.0 min: 45% A, 55% B; 15.0-17.5 min: 35% A, 65% B; 17.5-21.0 min: 5% A, 95% B; 21.0-25 min: 100% A, 0% B |
Flow Rate: | 0.200 mL/min |
Solvent A: | 97% water/3% methanol; 15 mM acetic acid; 10 mM tributylamine; 2.5 µM medronic acid |
Solvent B: | 100% Methanol |
Chromatography Type: | Reversed phase |
MS:
MS ID: | MS005573 |
Analysis ID: | AN005853 |
Instrument Name: | Thermo Q Exactive Plus Orbitrap |
Instrument Type: | Orbitrap |
MS Type: | ESI |
MS Comments: | .raw files were converted to .mzML files using MSConvert softward of the ProteoWizard package. The .mzML files were processed using El Maven software for peak picking, alignment, and annotation. |
Ion Mode: | NEGATIVE |