Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:2-Amino-9,10-epoxy-8-oxodecanoic acid)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002758 AN004476 Metabolic responses of normal rat kidneys to a high salt intake (Plasma) Blood Rat Medical College of Wisconsin Area
ST002758 AN004477 Metabolic responses of normal rat kidneys to a high salt intake (Plasma) Blood Rat Medical College of Wisconsin Area
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST002761 AN004488 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST002761 AN004489 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST000291 AN000464 LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice Urine Human University of Florida Peak area
ST000291 AN000465 LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice Urine Human University of Florida Peak area
ST000292 AN000466 LC-MS Based Approaches to Investigate Metabolomic Differences in the Plasma of Young Women after Drinking Cranberry Juice or Apple Juice Blood Human University of Florida Peak area
ST000311 AN000494 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak area
ST000311 AN000495 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak area
ST002776 AN004519 Zebrafish Optic Nerve Regeneration, Tectum Metabolomics - 3 Days Post Crush Eye tissue Zebrafish Eye disease University of Miami Peak Area
ST002066 AN003365 Glutaminase inhibition impairs CD8 T cell activation in STK11/Lkb1 deficient lung cancer Lung Mouse Cancer The Walter and Eliza Hall Institute of Medical Research peak height
ST002792 AN004543 Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria Blood Plasmodium falciparum Malaria Monash University peak height
ST003053 AN005006 Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics Bacterial cells Staphylococcus aureus Bacterial infection Monash University peak height
ST003144 AN005160 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST000311 AN000496 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak height
ST000311 AN000497 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak height
ST000546 AN000832 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST001033 AN001694 Determination of mode of action of anti-malalrial drugs using untargeted metabolomics Cultured cells Plasmodium falciparum Malaria Monash University Peak height
ST003160 AN005184 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST001201 AN001999 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001201 AN001999 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001202 AN002001 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001202 AN002001 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST002108 AN003449 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University Signal Intensity
  logo