List of Studies ( Metabolite:3-Butynoic acid)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST001788 | AN002899 | β-Adrenergic regulation of metabolism in macrophages (part-IV) | Macrophages | Human | Monash University | Intensity | |
ST001324 | AN002202 | Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress | Pacific Abalone | Institute of Oceanology, Chinese Academy of Sciences | mV*min | ||
ST002066 | AN003365 | Glutaminase inhibition impairs CD8 T cell activation in STK11/Lkb1 deficient lung cancer | Lung | Mouse | Cancer | The Walter and Eliza Hall Institute of Medical Research | peak height |
ST002698 | AN004372 | Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites | Infected Red Blood Cells | Plasmodium berghei | Malaria | Peter Doherty Institute for Infection and Immunity | peak height |
ST002792 | AN004542 | Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST002926 | AN004798 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003036 | AN004977 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 | Bacterial cells | Pseudomonas aeruginosa | Bacterial infection | Monash Institute of Pharmaceutical Sciences | peak height |
ST003144 | AN005159 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003521 | AN005782 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | peak height |
ST000403 | AN000642 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes | Cells | Human | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height | |
ST000414 | AN000655 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST000539 | AN000818 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) | Cells | Human | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height | |
ST000546 | AN000832 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST001274 | AN002115 | Metabolomics-based profiling of the mode of action of Pathogen Box compounds in Trypanosoma brucei (part-I) | Cultured cells | Trypanosoma brucei | Sleeping sickness | Monash University | Peak height |
ST001276 | AN002117 | Development and Characterisation of a Novel Class of Aroyl Guanidine Containing Anti-Trypanosomal Compounds | Cultured cells | Trypanosoma brucei | Sleeping sickness | Monash University | Peak height |
ST000549 | AN000837 | Investigating large scale metabolomics in mice serum lacking insulin receptors and IGF-1 receptors | Blood | Mouse | Diabetes | Mayo Clinic | Peak intensity |
ST000566 | AN000870 | Large Scale C18 Profiling of the Effects of Curcumin Supplementation of Older Adults: Relation to Vascular Function | Blood | Human | Heart disease | Mayo Clinic | Peak intensity |
ST001201 | AN001998 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001201 | AN001998 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001202 | AN002000 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001202 | AN002000 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001205 | AN002006 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001205 | AN002006 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001547 | AN002576 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | Peak intensity | |
ST001548 | AN002578 | β-Adrenergic regulation of metabolism in macrophages (part-II) | Macrophages | Human | Monash University | Peak intensity | |
ST001549 | AN002580 | β-Adrenergic regulation of metabolism in macrophages (part-III) | Macrophages | Human | Monash University | Peak intensity | |
ST002107 | AN003446 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002108 | AN003448 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST001175 | AN001950 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |