Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:5-Acetamidovaleric acid)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002758 AN004476 Metabolic responses of normal rat kidneys to a high salt intake (Plasma) Blood Rat Medical College of Wisconsin Area
ST002761 AN004488 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST003084 AN005042 Metabolic changes in embryonic CSF (Part 6) CSF Mouse Autism Boston Children's Hospital, Harvard Medical School a.u.
ST003085 AN005044 Metabolome changes in embryonic CSF (Part 7) CSF Mouse Autism Boston Children's Hospital, Harvard Medical School a.u.
ST003086 AN005046 Metabolome changes in embryonic CSF (Part 8) CSF Mouse Autism Boston Children's Hospital, Harvard Medical School a.u.
ST003087 AN005048 Metabolome changes in embryonic CSF (Part 9) CSF Mouse Autism Boston Children's Hospital, Harvard Medical School a.u.
ST003089 AN005052 Metabolome changes in embryonic CSF (Part 11) CSF Mouse Autism Boston Children's Hospital, Harvard Medical School a.u.
ST001788 AN002900 β-Adrenergic regulation of metabolism in macrophages (part-IV) Macrophages Human Monash University Intensity
ST002010 AN003276 Chemoresistant Ovarian Cancer Global Metabolomics Cultured cells Human Cancer The University of South Australia Intensity
ST002966 AN004874 Metabolomics reveal the pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo bulbs Plant Plant Chongqing Academy of Chinese Materia Medica, Chongqing, China peak area
ST003044 AN004994 A High-Fat Eucaloric Diet Induces Reprometabolic Syndrome of Obesity in Normal Weight Women - lipidomics Blood Human Obesity University of Colorado Denver peak area
ST000291 AN000464 LC-MS Based Approaches to Investigate Metabolomic Differences in the Urine of Young Women after Drinking Cranberry Juice or Apple Juice Urine Human University of Florida Peak area
ST000292 AN000466 LC-MS Based Approaches to Investigate Metabolomic Differences in the Plasma of Young Women after Drinking Cranberry Juice or Apple Juice Blood Human University of Florida Peak area
ST000311 AN000494 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak area
ST000311 AN000495 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak area
ST002066 AN003365 Glutaminase inhibition impairs CD8 T cell activation in STK11/Lkb1 deficient lung cancer Lung Mouse Cancer The Walter and Eliza Hall Institute of Medical Research peak height
ST002104 AN003439 Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations Cultured cells Human Cancer Future Industries Institute peak height
ST002698 AN004372 Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites Infected Red Blood Cells Plasmodium berghei Malaria Peter Doherty Institute for Infection and Immunity peak height
ST002792 AN004542 Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria Blood Plasmodium falciparum Malaria Monash University peak height
ST003053 AN005007 Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics Bacterial cells Staphylococcus aureus Bacterial infection Monash University peak height
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST000286 AN000454 Mouse skeletal myotube chronic low-frequency stimulation Myotubes Mouse University of Florida Peak height
ST000286 AN000455 Mouse skeletal myotube chronic low-frequency stimulation Myotubes Mouse University of Florida Peak height
ST000311 AN000496 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak height
ST000311 AN000497 TC and B6 untreated plasma in lupus-prone mice Blood Mouse Lupus University of Florida Peak height
ST000403 AN000643 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000414 AN000655 Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000539 AN000819 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000546 AN000832 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST003160 AN005185 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003179 AN005222 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001201 AN001998 Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001204 AN002004 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001547 AN002576 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University Peak intensity
ST001547 AN002577 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University Peak intensity
ST001548 AN002579 β-Adrenergic regulation of metabolism in macrophages (part-II) Macrophages Human Monash University Peak intensity
ST001549 AN002581 β-Adrenergic regulation of metabolism in macrophages (part-III) Macrophages Human Monash University Peak intensity
ST002094 AN003421 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic raw intensity
ST002106 AN003444 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University Signal Intensity
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
  logo