Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Ala-Ala-Ala)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST001788 AN002899 β-Adrenergic regulation of metabolism in macrophages (part-IV) Macrophages Human Monash University Intensity
ST003036 AN004977 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences peak height
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST000403 AN000642 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST003160 AN005185 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human UC Davis Peak Height
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University Peak intensity
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University Peak intensity
ST001547 AN002576 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University Peak intensity
ST001548 AN002578 β-Adrenergic regulation of metabolism in macrophages (part-II) Macrophages Human Monash University Peak intensity
ST001549 AN002580 β-Adrenergic regulation of metabolism in macrophages (part-III) Macrophages Human Monash University Peak intensity
ST002106 AN003445 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University relative intensity
ST002309 AN003772 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University relative intensity
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
ST001315 AN002190 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University Signal Intensity
  logo