List of Studies ( Metabolite:Ala-Pro)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST002405 | AN003919 | Stool global metabolite levels in peanut allergy (Part 2) | Feces | Human | Peanut allergy | Icahn School of Medicine at Mount Sinai | Absolute Intensity |
ST002247 | AN003670 | Microbiota and Health Study (Dhaka, Bangladesh) | Feces | Human | Broad Institute of MIT and Harvard | Abundances | |
ST002328 | AN003797 | Metabolome and transcriptome analysis of oral mucosa of HIV+ patients reveal a role for polyamine metabolic pathway in T cell dysfunction | Saliva | Human | HIV | Case Western Reserve University | area |
ST002759 | AN004481 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) | Kidney cortex | Rat | Medical College of Wisconsin | Area | |
ST002760 | AN004483 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) | Kidney outer medulla | Rat | Medical College of Wisconsin | Area | |
ST002760 | AN004485 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) | Kidney outer medulla | Rat | Medical College of Wisconsin | Area | |
ST002761 | AN004487 | Metabolic responses of normal rat kidneys to a high salt intake (Urine) | Urine | Rat | Medical College of Wisconsin | Area | |
ST002283 | AN003728 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | Area integration | |
ST003546 | AN005825 | Improved Soil Health and Pasture Phytochemical Richness Underlies Improved Beef Nutrient Density in Southern US Grass-Finished Beef Systems | Muscle | Cattle | Utah State University | AU | |
ST002051 | AN003338 | The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. | Cultured cells | Toxoplasma gondii | Parasitic infection | Robert Koch-Institute | counts |
ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | counts, height | |
ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | counts, height | |
ST002747 | AN004455 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | counts, height | |
ST002747 | AN004455 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | counts, height | |
ST002016 | AN003284 | Metabolomics of COVID patients | Blood | Human | COVID-19 | University of Virginia | intensity |
ST003405 | AN005588 | Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | log2 peak area top |
ST001324 | AN002202 | Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress | Pacific Abalone | Institute of Oceanology, Chinese Academy of Sciences | mV*min | ||
ST003277 | AN005365 | LC-MS/MS spatial analysis of mouse GI | Intestine | Mouse | Brown University | normalized imputed data | |
ST001841 | AN002984 | Metabolomics of lung microdissections reveals region- and sex-specific metabolic effects of acute naphthalene exposure in mice (part II) | Liver | Mouse | Oxidative stress | University of California, Davis | normalized peak height |
ST003172 | AN005206 | Untargeted Metabolomic Profile Of Chili Pepper (Capsicum Chinensed) Developmental Cycle | Capsicum Chinense | Plant | University of Alberta | peak area | |
ST000040 | AN000060 | Heatshock response of C. elegans using IROA (I) | Worms | C. elegans | University of Florida | Peak area | |
ST000922 | AN001511 | Crab Urine Study | Urine | Crab | Georgia Institute of Technology | Peak area | |
ST001658 | AN002706 | Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites | Yeast cells | Yeast | Cancer | Johns Hopkins University | Peak area |
ST001658 | AN002708 | Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites | Yeast cells | Yeast | Cancer | Johns Hopkins University | Peak area |
ST001658 | AN002709 | Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites | Yeast cells | Yeast | Cancer | Johns Hopkins University | Peak area |
ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | Peak area |
ST002977 | AN004887 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002977 | AN004888 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002977 | AN004889 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002977 | AN004890 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST003280 | AN005373 | Metabolomic analysis of Axon Regeneration in Xenopus laevis Optic Nerve | Eye tissue | Frog | Eye disease | University of Miami | Peak area |
ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | Peak Area |
ST002926 | AN004798 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003024 | AN004958 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 | Bacterial cells | Bacteria | Monash Institute of Pharmaceutical Sciences | peak height | |
ST003036 | AN004977 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 | Bacterial cells | Pseudomonas aeruginosa | Bacterial infection | Monash Institute of Pharmaceutical Sciences | peak height |
ST003053 | AN005006 | Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics | Bacterial cells | Staphylococcus aureus | Bacterial infection | Monash University | peak height |
ST003144 | AN005159 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003521 | AN005782 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | peak height |
ST003521 | AN005783 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | peak height |
ST000403 | AN000642 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes | Cells | Human | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height | |
ST000414 | AN000655 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST000539 | AN000818 | Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) | Cells | Human | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height | |
ST000546 | AN000832 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST001033 | AN001694 | Determination of mode of action of anti-malalrial drugs using untargeted metabolomics | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak height |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | Peak height | |
ST003160 | AN005184 | New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Peak height |
ST003179 | AN005221 | Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Peak height |
ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | UC Davis | Peak Height | |
ST001794 | AN002911 | Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples | Intestine | Human | University of California, Davis | Peak Height Intensity | |
ST001201 | AN001998 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001201 | AN001998 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001202 | AN002000 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001202 | AN002000 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001204 | AN002004 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001204 | AN002004 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001205 | AN002006 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Human | Malaria | Monash University | Peak intensity |
ST001205 | AN002006 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak intensity |
ST001547 | AN002576 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | Peak intensity | |
ST001548 | AN002578 | β-Adrenergic regulation of metabolism in macrophages (part-II) | Macrophages | Human | Monash University | Peak intensity | |
ST002281 | AN003725 | Metabolite patterns between isogenic normal hiPSCs and Trisomy hiPSC | iPSC cells | Human | Down syndrome | Guangdong provincial people's hospital | pmoles/l |
ST002094 | AN003420 | Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) | Feces | Human | Irritable bowel syndrome | Mayo Clinic | raw intensity |
ST002094 | AN003421 | Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) | Feces | Human | Irritable bowel syndrome | Mayo Clinic | raw intensity |
ST002901 | AN004760 | Potential serum metabolite markers and predictive features of depressive-like behavior and effective fluoxetine treatment in chronically socially isolated rats | Blood | Rat | Depression | University of Luebeck | Relative area |
ST003483 | AN005720 | Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection (Extracellular data) | Brain, Galea, PJI Tissue | Mouse | Bacterial infection | UNMC | Relative intensities |
ST002106 | AN003444 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002107 | AN003446 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002108 | AN003448 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002309 | AN003771 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002512 | AN004136 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | relative ion counts | |
ST002516 | AN004143 | Time course 2: Growth of Eggerthella lenta in defined media with some samples receiving 13C2 stable isotope labeled acetate | Bacterial culture supernatant | Eggerthella lenta | University of California, San Francisco | relative ion counts | |
ST001175 | AN001950 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |
ST001304 | AN002172 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii | Fibroblast cells | Toxoplasma gondii | Parasitic infection | Monash University | Signal Intensity |
ST001315 | AN002189 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |
ST002111 | AN003455 | Metabolomics dataset of optogenetic axon regenerative mouse model post optic nerve crush | Eye tissue | Mouse | Eye disease | University of Miami | µg/mL |