Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Asp-Leu-His)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST001074 AN001756 Open source discovery of starting points for next generation chemoprotective antimalarial drugs (Biofocus 1) Parasite Human Pennsylvania State University Average Peak Area
ST000441 AN000692 Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways Plasmodium cells Plasmodium falciparum Malaria Pennsylvania State University log2 fold change vs untreated
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Human Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Human Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST002024 AN003294 Plasmodium falciparum stable-isotope carbon labeling to explore metabolic consequences of keto–acid dehydrogenase disruption Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak Abundance (normalized, blank subtracted, and corrected for baseline noise)
ST002011 AN003277 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003278 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002011 AN003279 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003387 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003388 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003389 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST002078 AN003390 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University peak area
ST001232 AN002050 Combining stage - specificity and metabolomic profiling to advance drug discovery for malaria Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak area
ST001279 AN002120 K13 mutations driving artemisinin resistance rewrite Plasmodium falciparum’s programmed intra-erythrocytic development and transform mitochondrial physiology Parasite Plasmodium falciparum Malaria Penn State Peak area
ST001149 AN001896 Plasmodium Niemann-Pick Type C1-Related Protein is a Druggable Target Required for Parasite Membrane Homeostasis Cultured cells Plasmodium falciparum Malaria Pennsylvania State University Peak Area Post-Blank Subtraction
ST001299 AN002163 Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran Intestine Mouse The Pennsylvania State University (Penn State) ppm
  logo