Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Asp-Ser)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST003768 AN006186 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006186 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003587 AN005891 Comparison of Machine Learning Models for Metabolomic-Based Clinical Prediction of Preterm Birth Blood Human University of Calgary LC-MS
ST003565 AN005858 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST003356 AN005498 Noninvasive multiomic measurement of cell type repertoires in human urine Urine Human Urinary tract infection CZ Biohub LC-MS
ST003179 AN005222 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003144 AN005160 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002792 AN004543 Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002512 AN004136 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002075 AN003382 Profiling of the human intestinal microbiome and bile acids under physiologic conditions using an ingestible sampling device (Part 2) Intestine Human University of California, Davis LC-MS
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001205 AN002006 Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001204 AN002005 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001204 AN002005 Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Human Malaria Monash University LC-MS
ST001202 AN002000 Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST001175 AN001950 Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST000539 AN000819 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash University LC-MS
ST000403 AN000643 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences LC-MS
  logo